Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genom Data ; 25(1): 54, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849746

RESUMEN

BACKGROUND: The analysis of differentially expressed genes in muscle tissues of sheep at different ages is helpful to analyze the gene expression trends during muscle development. In this study, the longissimus dorsi muscle of pure breeding Hu sheep (H), Suffolk sheep and Hu sheep hybrid F1 generation (SH) and East Friesian and Hu sheep hybrid sheep (EHH) three strains of sheep born 2 days (B2) and 8 months (M8) was used as the research object, and transcriptome sequencing technology was used to identify the differentially expressed genes of sheep longissimus dorsi muscle in these two stages. Subsequently, GO and KEGG enrichment analysis were performed on the differential genes. Nine differentially expressed genes were randomly selected and their expression levels were verified by qRT-PCR. RESULTS: The results showed that 842, 1301 and 1137 differentially expressed genes were identified in H group, SH group and EHH group, respectively. Among them, 191 differential genes were enriched in these three strains, including pre-folding protein subunit 6 (PFDN6), DnaJ heat shock protein family member A4 (DNAJA4), myosin heavy chain 8 (MYH8) and so on. GO and KEGG enrichment analysis was performed on 191 differentially expressed genes shared by the three strains to determine common biological pathways. The results showed that the differentially expressed genes were significantly enriched in ribosomes, unfolded protein binding, FoxO signaling pathway, glycolysis / glycogen generation and glutathione signaling pathway that regulate muscle protein synthesis and energy metabolism. The results of qRT-PCR were consistent with transcriptome sequencing, which proved that the sequencing results were reliable. CONCLUSIONS: Overall, this study revealed the important genes and signaling pathways related to sheep skeletal muscle development, and the result laid a foundation for further understanding the mechanism of sheep skeletal muscle development.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético , Animales , Ovinos/genética , Ovinos/crecimiento & desarrollo , Ovinos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Transcriptoma , Desarrollo de Músculos/genética
2.
Animals (Basel) ; 14(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540045

RESUMEN

Reactive oxygen species (ROS) are important factors that lead to a decline in sperm quality during semen preservation. Excessive ROS accumulation disrupts the balance of the antioxidant system in sperm and causes lipid oxidative damage, destroying its structure and function. Curcumin is a natural plant extract that neutralizes ROS and enhances the function of endogenous antioxidant enzymes. The effect of curcumin on the preservation of sheep semen has not been reported. This study aims to determine the effects of curcumin on refrigerated sperm (4 °C) and analyze the effects of curcumin on sperm metabolism from a Chinese native sheep (Hu sheep). The results showed that adding curcumin significantly improved (p < 0.05) the viability of refrigerated sperm at an optimal concentration of 20 µmol/L, and the plasma membrane and acrosome integrity in semen were significantly improved (p < 0.05). Adding curcumin to refrigerated semen significantly increased (p < 0.05) the levels of antioxidant enzymes (T-AOC, CAT, and SOD) and significantly decreased (p < 0.05) ROS production. A total of 13,796 metabolites in sperm and 20,581 metabolites in negative groups and curcumin-supplemented groups were identified using liquid chromatography-mass spectrometry. The proportion of lipids and lipid-like molecules among all metabolites in the sperm was the highest, regardless of treatment. We identified 50 differentially expressed metabolites (DEMs) in sperm between the negative control and curcumin-treated groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEMs were mainly enriched in the calcium signaling pathway, phospholipase D signaling pathway, sphingolipid metabolism, steroid hormone biosynthesis, 2-oxocarboxylic acid metabolism, and other metabolic pathways. The findings indicate that the addition of an appropriate concentration (20 µm/L) of curcumin to sheep semen can effectively suppress reactive oxygen species (ROS) production and extend the duration of cryopreservation (4 °C) by modulating the expression of sphingosine-1-phosphate, dehydroepiandrosterone sulfate, phytosphingosine, and other metabolites of semen. This discovery offers a novel approach to enhancing the cryogenic preservation of sheep semen.

3.
Gene ; 898: 148095, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38128793

RESUMEN

Osteogenesis is a complex multilevel process regulated by multiple genes. The GATA binding protein 4 (GATA4) gene has been extensively studied for its pivotal role in bone genesis and bone differentiation. However, its relationship with the growth traits of Shaanbei white cashmere (SBWC) and Guizhou black (GB) goats remains unclear. This work aims to investigate the potential influence of genetic mutations in the GATA4 gene on the growth traits goats. Thus, two Insertion/deletion (InDel) polymorphisms (8-bp-InDel and 9-bp-InDel) were screened and detected in a total of 1161 goats (including 980 SBWC goats and 181 GB goats) using PCR and agarose gel electrophoresis. The analyses revealed that there were two genotypes (ID and DD) for these two loci. In SBWC goats, 8-bp-InDel and 9-bp-InDel loci were significantly associated with heart girth (HG) and hip width (HW). Notably, individuals with DD genotype of 8-bp-InDel locus were superior while those with DD genotype of 9-bp-InDel locus were inferior. Correlation analyses of the four combined genotypes revealed significant associations with cannon circumference (CC), body height (BH), HG and HW. This work provides a foundation for the application of molecular marker-assisted selection (MAS) in goat breeding programs. Furthermore, the findings highlight the potential of the GATA4 gene and its genetic variations as valuable indicators for selecting goats with desirable growth traits.


Asunto(s)
Cabras , Mutación INDEL , Animales , Genotipo , Cabras/genética , Mutación , Fenotipo
4.
Electron. j. biotechnol ; 51: 58-66, May. 2021. tab, ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1343388

RESUMEN

BACKGROUND: Transmembrane protein 95 (TMEM95) plays a role in male fertility. Previous studies showed that genes with a significant impact on reproductive traits can also affect the growth traits of livestock. Thus, we speculated that the genetic variation of TMEM95 gene may have effects on growth traits of cattle. RESULTS: Two SNPs were genotyped. The rs136174626 and rs41904693 were in the intron 4 and 30 -untranslated region, respectively. The linkage disequilibrium analysis illustrated that these two loci were not linked. The rs136174626 was associated with six growth traits of Nanyang cattle, four traits of Luxi cattle, and three traits of Ji'an cattle. For rs41904693 locus, the GG individuals had greater body height and abdominal girth in Ji' an cattle than TT and TG individuals. In Jinnan cattle, GG and TT individuals had greater body height, height at hip cross, body length, and heart girth than TG individuals. The potential splice site prediction results suggest that the rs136174626 may influence the splicing efficiency of TMEM95, and the miRNA binding site prediction results showed that the rs41904693 may influence the expression of TMEM95 by affecting the binding efficiency of Bta-miR-1584 and TMEM95 30 -UTR. CONCLUSIONS: The findings of the study suggested that the two SNPs in TMEM95 could be a reliable basis for molecular breeding in cattle.


Asunto(s)
Animales , Bovinos , Bovinos/genética , Polimorfismo de Nucleótido Simple , Proteínas de la Membrana/genética , Variación Genética , Bovinos/crecimiento & desarrollo , Barajamiento de ADN , Ganado , Técnicas de Genotipaje , Frecuencia de los Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA