Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Inorg Chem ; 63(19): 8822-8831, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696545

RESUMEN

This study presents the rare examples of S-heteroaryl tetradentate Pt(S^C^N^O) luminescent complexes (PtSZ and PtSZtBu) containing a Pt-S bond. The presence of the Pt-S bond allows the novel Pt(S^C^N^O) complexes to exhibit temperature-dependent phosphorescent emission behavior. The PtSZtBu exhibits dual-emission phenomena and biexponential transient decay spectra above 250 K, indicating the presence of two minimal excited states in the potential energy surface (PES) of the T1 state. Through complementary experimental and computational studies, we have identified changes in orbital composition between Pt(dxy)-S(px) and Pt(dyz)-S(pz) in excited states with increasing temperature. This results in two energy minima, enabling the excited states to decay selectively and radiatively at different temperatures. Consequently, this leads to remarkable steady-state and transient emission spectra changes. Our work not only provides valuable insights for the development of novel Pt-S bond-based tetradentate Pt(II) complexes but also enhances our understanding of the distinctive properties governed by the Pt-S bond.

2.
J Chem Inf Model ; 63(15): 4679-4690, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37489739

RESUMEN

The contradictory behaviors in light harvesting and non-photochemical quenching make xanthophyll lutein the most attractive functional molecule in photosynthesis. Despite several theoretical simulations on the spectral properties and excited-state dynamics, the atomic-level photophysical mechanisms need to be further studied and established, especially for an accurate description of geometric and electronic structures of conical intersections for the lowest several electronic states of lutein. In the present work, semiempirical OM2/MRCI and multi-configurational restricted active space self-consistent field methods were performed to optimize the minima and conical intersections in and between the 1Ag-, 2Ag-, 1Bu+, and 1Bu- states. Meanwhile, the relative energies were refined by MS-CASPT2(10,8)/6-31G*, which can reproduce correct electronic state properties as those in the spectroscopic experiments. Based on the above calculation results, we proposed a possible excited-state relaxation mechanism for lutein from its initially populated 1Bu+ state. Once excited to the optically bright 1Bu+ state, the system will propagate along the key reaction coordinate, i.e., the stretching vibration of the conjugated carbon chain. During this period of time, the 1Bu- state will participate in and forms a resonance state between the 1Bu- and 1Bu+ states. Later, the system will rapidly hop to the 2Ag- state via the 1Bu+/2Ag- conical intersection. Finally, the lutein molecule will survive in the 2Ag- state for a relatively long time before it internally converts to the ground state directly or via a twisted S1/S0 conical intersection. Notably, though the photophysical picture may be very different in solvents and proteins, the current theoretical study proposed a promising calculation protocol and also provided many valuable mechanistic insights for lutein and similar carotenoids.

3.
Phys Chem Chem Phys ; 25(11): 7669-7680, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857660

RESUMEN

The excited-state properties and photophysics of cytosine aza-analogues, i.e., 2,4-diamino-1,3,5-triazine (2,4-DT) and 2-amino-1,3,5-triazine (2-AT) in solution have been systematically explored using the QM(MS-CASPT2//CASSCF)/MM approach. The excited-state nonradiative relaxation mechanisms for the initially photoexcited S1(ππ*) state decay back to the S0 state are proposed in terms of the present computed minima, surface crossings (conical intersections and singlet-triplet crossings), and excited-state decay paths in the S1, S2, T1, T2, and S0 states. Upon photoexcitation to the bright S1(ππ*) state, 2,4-DT quickly relaxes to its S1 minimum and then overcomes a small energy barrier of 5.1 kcal mol-1 to approach a S1/S0 conical intersection, where the S1 system hops to the S0 state through S1 → S0 internal conversion (IC). In addition, at the S1 minimum, the system could partially undergo intersystem crossing (ISC) to the T1 state, followed by further ISC to the S0 state via the T1/S0 crossing point. In the T1 state, an energy barrier of 7.9 kcal mol-1 will trap 2,4-DT for a while. In parallel, for 2-AT, the system first relaxes to the S1 minimum and then S1 → S0 IC or S1 → T1 → S0 ISCs take place to the S0 state by surmounting a large barrier of 15.3 kcal mol-1 or 11.9 kcal mol-1, respectively, which heavily suppress electronic transition to the S0 state. Different from 2,4-DT, upon photoexcitation in the Franck-Condon region, 2-AT can quickly evolve in an essentially barrierless manner to nearby S2/S1 conical intersection, where the S2 and T1 states can be populated. Once it hops to the S2 state, the system will overcome a relatively small barrier (6.6 kcal mol-1vs. 15.3 kcal mol-1) through IC to the S0 state. Similarly, an energy barrier of 11.9 kcal mol-1 heavily suppresses the T1 state transformation to the S0 state. The present work manifests that the amination/deamination of the triazine rings can affect some degree of different vertical and adiabatic excitation energies and nonradiative decay pathways in solution. It not only rationalizes excited-state decay dynamics of 2,4-DT and 2-AT in aqueous solution but could also provide insights into the understanding of the photophysics of aza-nucleobases.

4.
Phys Chem Chem Phys ; 25(38): 26258-26269, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37743787

RESUMEN

The excited state properties and deactivation pathways of two DNA methylation inhibitors, i.e., 5-azacytidine (5ACyd) and 2'-deoxy-5-azacytidine (5AdCyd) in aqueous solution, are comprehensively explored with the QM(CASPT2//CASSCF)/MM protocol. We systematically map the feasible decay mechanisms based on the obtained excited-state decay paths involving all the identified minimum-energy structures, conical intersections, and crossing points driving the different internal conversion (IC) and intersystem crossing (ISC) routes in and between the 1ππ*, 1nπ*, 3ππ*, 3nπ*, and S0 states. Unlike the 1nπ* state below the 1ππ* state in 5ACyd, deoxyribose group substitution at the N1 position leads to the 1ππ* state becoming the S1 state in 5AdCyd. In 5ACyd and 5AdCyd, the initially populated 1ππ* state mainly deactivates to the S0 state through the direct 1ππ* → S0 IC or mediated by the 1nπ* state. The former nearly barrierless IC channel of 1ππ* → S0 occurs ultrafast via the nearby low-lying 1ππ*/S0 conical intersection. In the latter IC channel of 1ππ* → 1nπ* → S0, the initially photoexcited 1ππ* state first approaches the nearby S2/S1 conical section 1ππ*/1nπ* and then undergoes efficient IC to the 1nπ* state, followed by the further IC to the initial S0 state via the S1/S0 conical intersection 1nπ*/S0. The 1nπ*/S0 conical intersection is estimated to be located 6.0 and 4.9 kcal mol-1 above the 1nπ* state minimum in 5ACyd and 5AdCyd, respectively, at the QM(CASPT2)/MM level. In addition to the efficient singlet-mediated IC channels, the minor ISC routes would populate 1ππ* to T1(ππ*) through 1ππ* → T1 or 1ππ* → 1nπ* → T1. Relatively, the 1ππ* → 1nπ* → T1 route benefits from the spin-orbit coupling (SOC) of 1nπ*/3ππ* of 8.7 cm-1 in 5ACyd and 10.2 cm-1 in 5AdCyd, respectively. Subsequently, the T1 system will approach the nearby T1/S0 crossing point 3ππ*/S0 driving it back to the S0 state. Given the 3ππ*/S0 crossing point located above the T1 minimum and the small T1/S0 SOC, i.e., 8.4 kcal mol-1 and 2.1 cm-1 in 5ACyd and 6.8 kcal mol-1 and 1.9 cm-1 in 5AdCyd, respectively, the slow T1 → S0 would trap the system in the T1 state for a while. The present work could contribute to understanding the mechanistic photophysics and photochemistry of similar aza-nucleosides and their derivatives.

5.
J Phys Chem A ; 127(47): 10008-10015, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37971400

RESUMEN

Imidazole-2-carboxaldehyde (IC) can be generated in atmospheric waters and absorbs solar radiation in the near UV region to produce its excited triplet state (3IC), which contributes to the formation of a secondary organic aerosol (SOA). The photoreactivity of IC is significantly influenced by its surroundings, such as water and acidic environment, because IC is capable of transforming into gem-diol under above conditions. Meanwhile, the electron configuration of 3IC is critical in elucidating the reaction mechanism of 3IC with other anthropogenic and biogenic volatile organic compounds (VOCs). In this study, steady-state and time-resolved resonance Raman as well as transient absorption spectroscopic experiments were conducted to provide vibrational and kinetic information on IC and 3IC in the presence of water and acid conditions. Using density functional theory (DFT) calculations, the H-bonding at the carbonyl O was confirmed and the hydrated structure of IC and 3IC was determined. 1,4-Cyclohexadiene is a good hydrogen donor, and it has a second-order rate constant of ∼107 M-1 s-1 toward 3IC. The results of CASSCF calculations suggest that the hydrogen abstraction may involve the transition from the ππ* to nπ* triplet state via the surface-crossing point.

6.
Phys Chem Chem Phys ; 24(21): 13293-13304, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35607908

RESUMEN

Herein, we have employed the QM(CASPT2//CASSCF)/MM method to explore the photophysical and photochemical mechanism of oxybenzone (OB) in methanol solution. Based on the optimized minima, conical intersections and crossing points, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decay paths in the 1ππ*, 1nπ*, 3ππ*, 3nπ*, and S0 states, we have identified several feasible excited-state relaxation pathways for the initially populated S2(1ππ*) state to decay to the initial enol isomer' S0 state. The major one is the singlet-mediated and stretch-torsion coupled ESIPT pathway, in which the system first undergoes an essentially barrierless 1ππ* ESIPT process to generate the 1ππ* keto species, and finally realizes its ground state recovery through the subsequent carbonyl stretch-torsion facilitating S1 → S0 internal conversion (IC) and the reverse ground-state intramolecular proton transfer (GSIPT) process. The minor ones are related to intersystem crossing (ISC) processes. At the S2(1ππ*) minimum, an S2(1ππ*)/S1(1nπ*)/T2(3nπ*) three-state intersection region helps the S2 system branch into the T1 state through a S2 → S1 → T1 or S2 → T2 → T1 process. Once it has reached the T1 state, the system may relax to the S0 state via direct ISC or via subsequent nearly barrierless 3ππ* ESIPT to yield the T1 keto tautomer and ISC. The resultant S0 keto species significantly undergoes reverse GSIPT and only a small fraction yields the trans-keto form that relaxes back more slowly. However, due to small spin-orbit couplings at T1/S0 crossing points, the ISC to S0 state occurs very slowly. The present work rationalizes not only the ultrafast excited-state decay dynamics of OB but also its phosphorescence emission at low temperature.


Asunto(s)
Protones , Protectores Solares , Benzofenonas , Metanol
7.
Phys Chem Chem Phys ; 24(45): 27793-27803, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36349893

RESUMEN

In this work, we have used the QM(CASPT2//CASSCF)/MM approach to study the photophysical properties and relaxation mechanism of 5-azacytosine (5-AC) in aqueous solution. Based on the relevant minimum-energy structures and intersection structures, and excited-state decay paths in the S1, S2, T1, T2, and S0 states, several feasible excited-state nonradiative decay channels from the initially populated S2(ππ*) state are proposed. Two major channels are singlet-mediated nonradiative pathways, in which the S2 system will internally convert (IC) to the S0 state directly or mediated by the 1nπ* state via a 1ππ*/1nπ* conical intersection. The minor ones are related to intersystem crossing (ISC) processes. The system would populate to the T1 state via the S2 → S1 → T1 or S2 → T2 → T1 ISC process, followed by further decay to the S0 state via the transition from T1 to S0. However, due to small spin-orbit couplings (SOCs) at the singlet-triplet crossing points, the related ISC would be less efficient and probably take longer. The present work rationalizes the ultrafast excited-state decay dynamics of 5-AC in aqueous solution and its low quantum yields of triplets and fluorescence. It provides important mechanistic insights into understanding 5-AC's derivatives and analogues.


Asunto(s)
Citosina , Teoría Cuántica , Agua
8.
J Phys Chem A ; 126(1): 16-28, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34963284

RESUMEN

Here, we employ the CASPT2//CASSCF and QM(CASPT2//CASSCF)/MM approaches to explore the photochemical mechanism of homomenthyl salicylate (HMS) in vacuum and an acetonitrile solution. The results show that in both cases, the excited-state relaxation mainly involves a spectroscopically "bright" S1(1ππ*) state and the lower-lying T1 and T2 states. In the major relaxation pathway, the photoexcited S1 keto system first undergoes an essentially barrierless excited-state intramolecular proton transfer (ESIPT) to generate the S1 enol minimum, near which a favorable S1/S0 conical intersection decays the system to the S0 state followed by a reverse ground-state intramolecular proton transfer (GSIPT) to repopulate the initial S0 keto species. In the minor one, an S1/T2/T1 three-state intersection in the keto region makes the T1 state populated via direct and T2-mediated intersystem crossing (ISC) processes. In the T1 state, an ESIPT occurs, which is followed by ISC near a T1/S0 crossing point in the enol region to the S0 state and finally back to the S0 keto species. In addition, a T1/S0 crossing point near the T1 keto minimum can also help the system decay to the S0 keto species. However, small spin-orbit couplings between T1 and S0 at these T1/S0 crossing points make ISC to the S0 state very slow and make the system trapped in the T1 state for a while. The present work rationalizes not only the ultrafast excited-state decay dynamics of HMS but also its low quantum yield of phosphorescence at 77 K.

9.
J Am Chem Soc ; 143(15): 5691-5697, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843229

RESUMEN

Singlet fission (SF), the conversion of one high-energy singlet to two low-energy triplets, provides the potential to increase the efficiency of photovoltaic devices. In the SF chromophores with C2h symmetry, exemplified by polyenes, singlet-to-triplet conversion generally involves a low-lying 21Ag dark state, which serves as either a multiexciton (ME) intermediate to promote the SF process or a parasitic trap state to shunt excited-state populations via internal conversion. This controversial behavior calls for a deep understanding of dark-state-related photophysics involving the higher-lying singlet state. However, the optical "dark" and "transient" nature of these dark states and strong correlation feature of double exciton species make their characterization and interpretation challenging from both experimental and computational perspectives. In the present work combining transient spectroscopy and multireference electronic structure calculations (XDW-CASPT2), we addressed a new photophysical model, i.e., a high-lying 31Ag dark-state-mediated ultrafast SF process in the benzodipyrrolidone (BDPP) skeleton. Such a 31Ag dark state with distinctive double excitation character, described as the ME state, could be populated from the initial 11Bu bright state on an ultrafast time scale given the quasi-degeneracy and intersection of the two electronic states. Furthermore, the suitable optical band gap and triplet energy, high triplet yield, and excellent photostability render BDPP a promising SF candidate for photovoltaic devices. These results not only enrich the arsenal of SF materials but also shed new insights into the understanding of dark-state-related photophysics, which could promote the development of new SF-active materials.

10.
Phys Chem Chem Phys ; 23(21): 12421-12430, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34028476

RESUMEN

Sulfur-substituted nucleobases are highly promising photosensitizers that are widely used in photodynamic therapy, and there are numerous studies exploring their unique photophysical behaviors. However, relevant photophysical investigations on selenium and tellurium substitutions are still rare. Herein, the high-level multistate complete-active-space second-order perturbation (MS-CASPT2) method was performed for the first time to explore the excited-state relaxation processes of tellurium-substituted guanine (TeG) and cytosine (TeC). Based on the electronic state properties in the Franck-Condon (FC) region, we found that the lowest five (S0, S1, S2, T1, and T2) and six (S0, S1, S2, T1, T2 and T3) states will participate in the nonadiabatic transition processes of TeG and TeC systems, respectively. In these electronic states, two kinds of minimum and intersection structures (i.e., planar and twisted structures) were obtained for both TeG and TeC systems. The linearly interpolated internal coordinate (LIIC) paths and spin-orbit coupling (SOC) constants revealed several possible planar and twisted excited-state decay channels, which could lead the systems to the lowest reactive triplet state of T1. Small energy barriers in the T1 state will trap the TeG and TeC systems for a while before they finally populate to the ground state. Although tellurium substitution would further redshift the absorption wavelength and enhance the intersystem crossing (ISC) rate to the T1 state compared with sulfur and selenium substitutions, the rapid ISC process of T1 → S0 may make it a less effective photosensitizer to sensitize the molecular oxygen. We believe our present work will provide important mechanistic insights into the photophysics of tellurium-substituted nucleobases.


Asunto(s)
Citosina/química , Guanina/química , Teoría Cuántica , Telurio/química , Procesos Fotoquímicos
11.
J Phys Chem A ; 125(9): 1880-1891, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33645980

RESUMEN

Methyl salicylate (MS) as a subunit of larger salicylates found in commercial sunscreens has been shown to exhibit keto-enol tautomerization and dual fluorescence emission via excited-state intramolecular proton transfer (ESIPT) after the absorption of ultraviolet (UV) radiation. However, its excited-state relaxation mechanism is unclear. Herein, we have employed the quantum mechanics(CASPT2//CASSCF)/molecular mechanics method to explore the ESIPT and excited-state relaxation mechanism of MS in the lowest three electronic states, that is, S0, S1, and T1 states, in a methanol solution. Based on the optimized geometric and electronic structures, conical intersections and crossing points, and minimum-energy paths combined with the computed linearly interpolated Cartesian coordinate paths, the photophysical mechanism of MS has been proposed. The S1 state is a spectroscopically bright 1ππ* state in the Franck-Condon region. From the initially populated S1 state, there exist three nonradiative relaxation paths to repopulate the S0 state. In the first one, the S1 system (i.e., ketoB form) first undergoes an ESIPT path to generate an S1 tautomer (i.e., enol form) that exhibits a large Stokes shift in experiments. The generated S1 enol tautomer further evolves toward the nearby S1/S0 conical intersection and then hops to the S0 state, followed by the backward ground-state intramolecular proton transfer (GSIPT) to the initial ketoB form S0 state. In the second one, the S1 system first hops through the S1 → T1 intersystem crossing (ISC) to the T1 state, which then further decays to the S0 state via T1 → S0 ISC at the T1/S0 crossing point. In the third path, the T1 system that stems from the S1 → T1 ISC process via the S1/T1 crossing point first takes place a T1 ESIPT to generate a T1 enol tautomer, which can further decay to the S0 state via T1-to-S0 ISC. Finally, the GSIPT occurs to back the system to the initial ketoB form S0 state. Our present work could contribute to understanding the photophysics of MS and its derivatives.

12.
J Phys Chem A ; 125(40): 8816-8826, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34606278

RESUMEN

The photophysical mechanisms of tellurium-substituted uracils were studied at the multistate complete-active-space second-order perturbation level with a particular focus on how the position and number of tellurium substitutions affect their nonadiabatic relaxation processes. Electronic structure analysis reveals that the lowest several excited states are closely concerned with the n and π orbitals at the Te7-C2 [Te8-C4] moiety of 2-tellurouracil (2TeU) [4TeU and 24TeU]. Both planar and twisted minima were optimized for 2TeU, whereas only planar ones were obtained for 4TeU and 24TeU, except for a twisted T1 minimum of 4TeU. Based on intersection structures and linearly interpolated internal coordinate paths, we proposed several feasible excited-state deactivation paths. It is found that the relaxation channels for 2TeU are more complicated than those of 4TeU and 24TeU. The electronic population transfer to the T1 state for 2TeU is easier than that for 4TeU and 24TeU in consideration of the barrier heights from the S2 Franck-Condon point to the S2/S1 or S2/T2 intersections. In addition, the recovery of the ground state from the T1 state for 2TeU will be more efficient than that for the other two systems as well.

13.
Angew Chem Int Ed Engl ; 60(34): 18688-18693, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097335

RESUMEN

Phytochrome proteins are light receptors that play a pivotal role in regulating the life cycles of plants and microorganisms. Intriguingly, while cyanobacterial phytochrome Cph1 and cyanobacteriochrome AnPixJ use the same phycocyanobilin (PCB) chromophore to absorb light, their excited-state behavior is very different. We employ multiscale calculations to rationalize the different early photoisomerization mechanisms of PCB in Cph1 and AnPixJ. We found that their electronic S1 , T1 , and S0 potential minima exhibit distinct geometric and electronic structures due to different hydrogen bond networks with the protein environment. These specific interactions influence the S1 electronic structures along the photoisomerization paths, ultimately leading to internal conversion in Cph1 but intersystem crossing in AnPixJ. This explains why the excited-state relaxation in AnPixJ is much slower (ca. 100 ns) than in Cph1 (ca. 30 ps). Further, we predict that efficient internal conversion in AnPixJ can be achieved upon protonating the carboxylic group that interacts with PCB.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/química , Fotorreceptores Microbianos/química , Ficobilinas/química , Ficocianina/química , Fitocromo/química , Proteínas Quinasas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Enlace de Hidrógeno , Estructura Molecular , Procesos Fotoquímicos , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/metabolismo , Proteínas Quinasas/metabolismo , Estereoisomerismo
14.
Phys Chem Chem Phys ; 22(29): 16772-16782, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32662496

RESUMEN

The photophysical and photochemical mechanisms of 2-nitrofluorene (2-NF) in the gas phase and acetonitrile solution have been studied theoretically. Upon ∼330 nm irradiation to the first bright state (1ππ*), the 2-NF system can decay to triplet excited states via rapid intersystem crossing (ISC) processes through different surface crossing points or to the ground state via an ultrafast internal conversion (IC) process through the S1/S0 conical intersection. The 1nπ* dark state will serve as a bridge when the system leaves the Franck-Condon (FC) region and approaches to the S1 minimum. The molecule maintains a planar geometry during the excited-state relaxation processes. The differences on excitation properties such as electronic configurations and spin-orbit coupling (SOC) interactions between those in the gas phase and acetonitrile solution cannot be neglected, indicating possible changes on the efficiency of the related ISC processes for the 2-NF system in solution. Once arrived at the T1 state, it would further decay to the S0 state or photodegrade into the Ar-O˙ and NO˙ free radicals. During the intramolecular rearrangement process, the twisting of the nitro group out of the aromatic-ring plane is regarded as a critical structural variation for the photodegradation of the 2-NF system. The free radicals finally form through oxaziridine-type intermediate and transition state structures. The present work provides important mechanistic insights to the photochemistry of nitro-substituted polyaromatic compounds.

15.
Phys Chem Chem Phys ; 22(21): 12120-12128, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32440669

RESUMEN

The photophysics of selenium-substituted nucleobases has attracted recent experimental attention because they could serve as potential photosensitizers in photodynamic therapy. Herein, we present a comprehensive MS-CASPT2 study on the spectroscopic and excited-state properties, and photophysics of 2-selenouracil (2SeU), 4-selenouracil (4SeU), and 2,4-selenouracil (24SeU). Relevant minima, conical intersections, crossing points, and excited-state relaxation paths in the lowest five electronic states (i.e., S0, S1, S2, T2, and T1) are explored. On the basis of these results, their photophysical mechanisms are proposed. Upon photoirradiation to the bright S2 state, 2SeU quickly relaxes to its S2 minimum and then moves in an essentially barrierless way to a nearby S2/S1 conical intersection near which the S1 state is populated. Next, the S1 system arrives at an S1/T2/T1 intersection where a large S1/T1 spin-orbit coupling of 430.8 cm-1 makes the T1 state populated. In this state, a barrier of 6.8 kcal mol-1 will trap 2SeU for a while. In parallel, for 4SeU or 24SeU, the system first relaxes to the S2 minimum and then overcomes a small barrier to approach an S2/S1 conical intersection. Once hopping to the S1 state, there exists an extended region with very close S1, T2, and T1 energies. Similarly, a large S1/T1 spin-orbit coupling of 426.8 cm-1 drives the S1→ T1 intersystem crossing process thereby making the T1 state populated. Similarly, an energy barrier heavily suppresses electronic transition to the S0 state. The present work manifests that different selenium substitutions on uracil can lead to a certain extent of different vertical and adiabatic excitation energies, excited-state properties, and relaxation pathways. These insights could help understand the photophysics of selenium-substituted nucleobases.


Asunto(s)
Compuestos de Organoselenio/química , Uracilo/análogos & derivados , Luz , Modelos Químicos , Estructura Molecular , Compuestos de Organoselenio/efectos de la radiación , Termodinámica , Uracilo/química , Uracilo/efectos de la radiación
16.
J Phys Chem A ; 124(13): 2547-2559, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32187492

RESUMEN

Photoinduced ring-opening, decay, and isomerization of spirobenzopyran have been explored by the OM2/MRCI nonadiabatic dynamics simulations based on Tully's fewest-switches surface hopping scheme. The efficient S1 to S0 internal conversion as observed in experiments is attributed to the existence of two efficient excited-state decay pathways. The first one is related to the C-N dissociation, and the second one is done to the C-O dissociation. The C-O dissociation pathway is dominant, and more than 90% trajectories decay to the S0 state via the C-O bond-fission related S1/S0 conical intersections. Near these regions in the S0 state, trajectories can either return to spirobenzopyran or proceed to various intermediates including merocyanine via a series of bond rotations. Our nonadiabatic dynamics simulations also demonstrate that the hydrogen-out-of-plane (HOOP) motion is important for efficient and ultrafast excited-state deactivation. On the other hand, we have also found that the replacement of methyl groups by hydrogen atoms in spirobenzopyran can artificially introduce different intramolecular hydrogen transfers leading to hydrogen-transferred intermediates. This finding is important for the community and demonstrates that such a kind of structural truncation, sometimes, could be problematic, leading to incorrect photodynamics. Our present work provides valuable insights into the photodynamics of spirobenzopyran, which could be helpful for the design of spiropyran-based photochromic materials.

17.
J Phys Chem A ; 124(48): 10082-10089, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33226240

RESUMEN

We report several novel thermometers resulting from the temperature-induced aggregation of difluoroboron ß-diketonate chromophores. These thermometers exhibit a much wider temperature-dependent fluorescence emission from 445 to 592 nm along with the color change from blue to red in a dilute chloroform solution. Spectroscopy measurements and theoretical calculations confirm that the thermochromic luminescence originates from the reversible change in the noncovalent intermolecular interactions and the abrupt volume shrinkage of the solvent at its melting point. The present work provides a new strategy for rationally designing high-performance thermometers having a wide emission property.

18.
J Phys Chem A ; 123(29): 6144-6151, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31246461

RESUMEN

Herein, we have employed OM2/MRCI-based full-dimensional nonadiabatic dynamics simulations to explore the photoisomerization and subsequent excited-state decay of a macrocyclic cyclobiazobenzene molecule. Two S1/S0 conical intersection structures are found to be responsible for the excited-state decay. Related to these two conical intersections, we found two stereoselective photoisomerization and excited-state decay pathways, which correspond to the clockwise and counterclockwise rotation motions with respect to the N═N bond of the azo group. In both pathways, the excited-state isomerization is ultrafast and finishes within ca. 69 fs, but the clockwise isomerization channel is much more favorable than the counterclockwise one with a ratio of 74% versus 26%. Importantly, the present work demonstrates that stereoselective pathways exist not only in the photoisomerization of isolated azobenzene (AB)-like systems but also in macrocyclic systems with multiple ABs. This finding could provide useful insights for understanding and controlling the photodynamics of macrocyclic nanostructures with AB units as the main building units.

19.
Phys Chem Chem Phys ; 20(7): 5067-5073, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29388994

RESUMEN

Semisynthetic alphabets can potentially increase the genetic information stored in DNA through the formation of unusual base pairs. Recent experiments have shown that near-visible-light irradiation of the dTPT3 chromophore could lead to the formation of a reactive triplet state and of singlet oxygen in high quantum yields. However, the detailed excited-state relaxation paths that populate the lowest triplet state are unclear. Herein, we have for the first time employed the QM(MS-CASPT2//CASSCF)/MM method to explore the spectroscopic properties and excited-state relaxation mechanism of the aqueous dTPT3 chromophore. On the basis of the results, we have found that (1) the S2(1ππ*) state of dTPT3 is the initially populated excited singlet state upon near-visible light irradiation; and (2) there are two efficient relaxation pathways to populate the lowest triplet state, i.e. T1(3ππ*). In the first one, the S2(1ππ*) system first decays to the S1(1nπ*) state near the S2/S1 conical intersection, which is followed by an efficient S1 → T1 intersystem crossing process at the S1/T1 crossing point; in the second one, an efficient S2 → T2 intersystem crossing takes place first, and then, the T2(3nπ*) system hops to the T1(3ππ*) state through an internal conversion process at the T2/T1 conical intersection. Moreover, an S2/S1/T2 intersection region is found to play a vital role in the excited-state relaxation. These new mechanistic insights help in understanding the photophysics and photochemistry of unusual base pairs.


Asunto(s)
ADN/química , Modelos Moleculares , ADN/síntesis química , Luz , Conformación de Ácido Nucleico , Fotoquímica/métodos , Teoría Cuántica , Análisis Espectral
20.
J Phys Chem A ; 122(10): 2732-2738, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29488758

RESUMEN

Irradiation of nitro-PAHs in solution at ambient conditions leads to formation of its lowest excited triplet, dissociation intermediates nitrogen oxide (NO•) and aryloxy radical (Ar-O•). Experimental and theoretical studies demonstrated that Franck-Condon excited singlet state SFC(ππ*) to a receiver, higher-energy triplet state Tn(nπ*) controlled the ultrafast population of the triplet state and, hence, the slight fluorescence yield of nitronaphthalenes. However, the detailed information about the curve-crossings of potential energy surfaces and the major channels for forming T1 species and Ar-O• radical were unclear. Here, by using the CASSCF//CASPT2 method, an efficient decay channel is revealed: S2-FC-1NN → S2-MIN-1NN or S2T3-MIN-1NN → T3-MIN-1NN or T3T2-MIN-1NN→ T2-MIN-1NN or T2T1-MIN-1NN → T1-MIN-1NN. This explains the high yield of T1-1NN species and minor yield of Ar-O• and NO• radicals. The calculation results suggest the bifurcation processes take place predominantly after the internal conversion to the T1-1NN state via T2T1-MIN-1NN, one leads to T1-MIN-1NN, while the other to T1-MIN-ISO to produce Ar-O• and NO• radicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA