Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 18(1): 142, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34162415

RESUMEN

BACKGROUND: Chronic neuropathic pain is a frequent sequel to peripheral nerve injury and maladaptive nervous system function. Divanillyl sulfone (DS), a novel structural derivative of 4,4'-dihydroxydibenzyl sulfoxide from a traditional Chinese medicine Gastrodia elata with anti-nociceptive effects, significantly alleviated neuropathic pain following intrathecal injection. Here, we aimed to investigate the underlying mechanisms of DS against neuropathic pain. METHODS: A chronic constrictive injury (CCI) mouse model of neuropathic pain induced by sciatic nerve ligation was performed to evaluate the effect of DS by measuring the limb withdrawal using Von Frey filament test. Immunofluorescence staining was used to assess the cell localizations and expressions of Iba-1, ASC, NLRP3, and ROS, the formation of autolysosome. The levels of NLRP3-related proteins (caspase-1, NLRP3, and IL-1ß), mitophagy-related proteins (LC3, Beclin-1, and p62), and apoptosis-related proteins (Bcl-XL and Bax) were detected by Western blotting. The apoptosis of BV-2 cell and caspase activity were evaluated by flow cytometry. RESULTS: DS significantly alleviated the neuropathic pain by increasing the mechanical withdrawal threshold and inhibiting the activation of NLRP3 in CCI-induced model mice. Our findings indicated that DS promoted the mitophagy by increasing the LC3II and Beclin 1 and decreasing the levels of p62 protein in BV-2 cell. This is accompanied by the inhibition of NLRP3 activation, which was shown as inhibited the expression of NLRP3 in lysates as well as the secretion of mature caspase-1 p10 and IL-1ß p17 in supernatants in cultured BV-2 microglia. In addition, DS could promote mitophagy-induced improvement of dysfunctional mitochondria by clearing intracellular ROS and restoring mitochondrial membrane potential. CONCLUSION: Together, our findings demonstrated that DS ameliorate chronic neuropathic pain in mice by suppressing NLRP3 inflammasome activation induced by mitophagy in microglia. DS may be a promising therapeutic agent for chronic neuropathic pain.


Asunto(s)
Inflamasomas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuralgia/tratamiento farmacológico , Sulfonas/farmacología , Sulfonas/uso terapéutico , Animales , Apoptosis , Caspasa 1/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Mitocondrias/patología , Neuralgia/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Nervio Ciático/patología
2.
J Asian Nat Prod Res ; 23(4): 307-317, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33506714

RESUMEN

Six new triterpenes, uncarinic acids KP (1-6), along with 24 known analogues, were isolated as minor constituents of an aqueous decoction of the hook-bearing stems of Uncaria rhynchophylla (Gou-teng). By comprehensive spectroscopic data analysis, their structures were elucidated as derivatives of olean-12-en-28-oic acid and urs-12-en-28-oic acid with different oxidized forms at C-3, C-6, and/or C-23, respectively. Cell-based preliminary bioassay showed that the (E)-/(Z)-coumaroyloxy and (E)-/(Z)-feruloyloxy units at C-27 of olean-12-en-28-oic acid and urs-12-en-28-oic acid played roles in their bioactivities.[Formula: see text].


Asunto(s)
Triterpenos , Uncaria , Estructura Molecular , Extractos Vegetales
3.
J Asian Nat Prod Res ; 23(7): 615-626, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34080502

RESUMEN

Five new denudatine-type diterpenoid alkaloids (1-5), along with the known analogue aconicarmine (6), were isolated from an aqueous decoction of the lateral roots of Aconitum carmichaelii (fu-zi). Their structures were determined by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Compound 5 is the first denudatine-type diterpenoid alcohol iminium alkaloid, which could be partially transformed into the aza acetal form in pyridine-d5. Compound 5 inhibited mice writhing in an acetic acid-induced writhing assay.


Asunto(s)
Aconitum , Alcaloides , Diterpenos , Animales , Ratones , Estructura Molecular , Raíces de Plantas
4.
J Neuroinflammation ; 17(1): 13, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924228

RESUMEN

BACKGROUND: Isotalatizidine is a representative C19-diterpenoid alkaloid extracted from the lateral roots of Aconitum carmichaelii, which has been widely used to treat various diseases on account of its analgesic, anti-inflammatory, anti-rheumatic, and immunosuppressive properties. The aim of this study was to evaluate the analgesic effect of isotalatizidine and its underlying mechanisms against neuropathic pain. METHODS: A chronic constrictive injury (CCI)-induced model of neuropathic pain was established in mice, and the limb withdrawal was evaluated by the Von Frey filament test following isotalatizidine or placebo administration. The signaling pathways in primary or immortalized microglia cells treated with isotalatizidine were analyzed by Western blotting and immunofluorescence. RESULTS: Intrathecal injection of isotalatizidine attenuated the CCI-induced mechanical allodynia in a dose-dependent manner. At the molecular level, isotalatizidine selectively increased the phosphorylation of p38 and ERK1/2, in addition to activating the transcription factor CREB and increasing dynorphin A production in cultured primary microglia. However, the downstream effects of isotalatizidine were abrogated by the selective ERK1/2 inhibitor U0126-EtOH or CREB inhibitor of KG-501, but not by the p38 inhibitor SB203580. The results also were confirmed in in vivo experiments. CONCLUSION: Taken together, isotalatizidine specifically activates the ERK1/2 pathway and subsequently CREB, which triggers dynorphin A release in the microglia, eventually leading to its anti-nociceptive action.


Asunto(s)
Aconitina/análogos & derivados , Analgésicos/farmacología , Dinorfinas/biosíntesis , Microglía/efectos de los fármacos , Neuralgia/metabolismo , Aconitina/farmacología , Animales , Dolor Crónico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dinorfinas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Bioorg Chem ; 98: 103720, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32171982

RESUMEN

Selective JAK3 inhibitors have been shown to have a potential benefit in the treatment of autoimmune disorders. Here we report the identification of a series of pyrazolopyrimidine derivatives as potent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Most of these compounds (13k, 13n and 13 t), displayed stronger anti-JAK3 kinase activity and selectivity than tofacitinib. Furthermore, the most active inhibitor 13t (IC50 = 0.1 nM), also exhibited favourable selectivity for JAK3 in a panel of 9 kinases which contain the same cysteine. In a series of cytokinestimulated cellular analysis, compound 13 t, could potently block the JAK3-STAT signaling pathway. Further biological studies, including cellular antiproliferative activity assays and a rat adjuvant-induced arthritis model for in vivo evaluation, also indicated its efficacy and low toxicity in the treatment of rheumatoid arthritis. The results of these experimental explorations suggested that 13t is a promising lead compound for the development of selective JAK3 inhibitor with therapeutic potential in rheumatoid arthritis.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Janus Quinasa 3/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Janus Quinasa 3/metabolismo , Masculino , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Pirimidinas/síntesis química , Pirimidinas/química , Ratas , Ratas Endogámicas Lew , Relación Estructura-Actividad , Células THP-1
6.
J Chem Inf Model ; 59(12): 5002-5012, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31746601

RESUMEN

Developing Janus kinase 2 (JAK2) inhibitors has become a significant focus for small-molecule drug discovery programs in recent years because the inhibition of JAK2 may be an effective approach for the treatment of myeloproliferative neoplasm. Here, based on three different types of fingerprints and Extreme Gradient Boosting (XGBoost) methods, we developed three groups of models in that each group contained a classification model and a regression model to accurately acquire highly potent JAK2 kinase inhibitors from the ZINC database. The three classification models resulted in Matthews correlation coefficients of 0.97, 0.94, and 0.97. Docking methods including Glide and AutoDock Vina were employed to evaluate the virtual screening effectiveness of our classification models. The R2 of three regression models were 0.80, 0.78, and 0.80. Finally, 13 compounds were biologically evaluated, and the results showed that the IC50 values of six compounds were identified to be less than 100 nM. Among them, compound 9 showed high activity and selectivity in that its IC50 value was less than 1 nM against JAK2 while 694 nM against JAK3. The strategy developed may be generally applicable in ligand-based virtual screening campaigns.


Asunto(s)
Descubrimiento de Drogas/métodos , Janus Quinasa 2/antagonistas & inhibidores , Aprendizaje Automático , Inhibidores de Proteínas Quinasas/farmacología , Evaluación Preclínica de Medicamentos , Interfaz Usuario-Computador
7.
Bioorg Med Chem ; 27(8): 1646-1657, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30853331

RESUMEN

Janus kinases (JAKs) play a key role in the proliferation, apoptosis and differentiation of immune cells, and JAKs are considered as an attractive target for the treatment of inflammatory and autoimmune diseases. Here we show the design and optimization of pyrimidine-4,6-diamine derivatives as selectivity JAK3 inhibitors. Compound 11e, which might interact with unique cysteine (Cys909) residue in JAK3, exhibited excellent JAK3 inhibitory activity (IC50 = 2.1 nM) and high JAK kinase selectivity. In cellular assay, 11e showed moderate potency inhibiting IL-2-stimulated T cell proliferation. The data supports the further development of novel JAKs inhibitors.


Asunto(s)
Diaminas/química , Diseño de Fármacos , Janus Quinasa 3/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Pirimidinas/química , Animales , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Diaminas/metabolismo , Diaminas/farmacología , Humanos , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Janus Quinasa 3/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Pirimidinas/metabolismo , Pirimidinas/farmacología , Ratas , Relación Estructura-Actividad , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
8.
Bioorg Med Chem ; 27(8): 1562-1576, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30846405

RESUMEN

Janus kinases (JAKs) regulate various cancers and immune responses and are targets for the treatment of cancers and immune diseases. A new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amino derivatives were synthesized and optimized by introducing a functional 3,5-disubstituted-1H-pyrazole moiety into the C-3 moiety of pyrazole template, and then were biologically evaluated as potent Janus kinase 2 (JAK2) inhibitors. Among these molecules, inhibitors 11f, 11g, 11h and 11k displayed strong activity and selectivity against the JAK2 kinase, with IC50 values of 7.2 nM, 6.5 nM, 8.0 nM and 9.7 nM, respectively. In particular, the cellular inhibitory assay and western blot analysis further support the JAK2 selectivity of compound 11g also in cells. Furthermore, compound 11g also exhibited potent inhibitory activity in lymphocytes proliferation assay and delayed hypersensitivity assay. Taken together, the novel JAK2 selective inhibitors discovered in this study may be potential lead compounds for new drug discovery via further development of more potent and selective JAK2 inhibitors.


Asunto(s)
Diseño de Fármacos , Janus Quinasa 2/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Pirimidinas/química , Sitios de Unión , Dominio Catalítico , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Janus Quinasa 2/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/metabolismo , Pirazoles/farmacología , Pirimidinas/metabolismo , Pirimidinas/farmacología , Relación Estructura-Actividad
9.
Bioorg Chem ; 82: 68-73, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30268975

RESUMEN

Phytochemical studies on the leaves of Tripterygium wilfordii led to the isolation of seven new 18(4 → 3)-abeo-abietane lactones, triptergulides E - K (1 - 7). The structure of the new compounds was elucidated on the basis of their spectroscopic analysis, and the absolute configurations of compounds were confirmed by ECD, calculated ECD, and X-ray crystallographic analysis using anomalous scattering of Cu Kα radiation. Some compounds showed moderate inhibitory activities against NO, IL-6, and TNF-α production in LPS RAW 264.7 macrophage in vitro.


Asunto(s)
Abietanos/química , Lactonas/química , Tripterygium/química , Abietanos/aislamiento & purificación , Animales , Interleucina-6/antagonistas & inhibidores , Lactonas/aislamiento & purificación , Ratones , Óxido Nítrico/antagonistas & inhibidores , Hojas de la Planta/química , Células RAW 264.7 , Estereoisomerismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
10.
Bioorg Med Chem ; 26(17): 4774-4786, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30139575

RESUMEN

Janus kinases (JAKs) regulate various inflammatory and immune responses and are targets for the treatment of inflammatory and immune diseases. Here we report the discovery and optimization of 1H-pyrazolo[3,4-d]pyrimidin-4-amino as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Our optimization study gave compound 12a, which exhibited potent JAK3 inhibitory activity (IC50 of 6.2 nM) as well as excellent JAK kinase selectivity (>60-fold). In cellular assay, 12a exhibited potent immunomodulating effect on IL-2-stimulated T cell proliferation (IC50 of 9.4 µM). Further, compound 12a showed efficacy in delayed hypersensitivity assay. The data supports the further investigation of these compounds as novel JAKs inhibitors.


Asunto(s)
Janus Quinasa 3/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Pirimidinas/química , Acrilamida/química , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Proliferación Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Interleucina-2/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Espectroscopía de Protones por Resonancia Magnética , Ratas , Espectrometría de Masa por Ionización de Electrospray , Linfocitos T/efectos de los fármacos
11.
Molecules ; 22(3)2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327534

RESUMEN

Shenqi is a traditional Chinese polyherbal medicine has been widely used for the treatment of allergic rhinitis (AR). The aim of this study was to investigate the anti-allergic rhinitis activity of Shenqi and explore its underlying molecular mechanism. Ovalbumin (OVA)-induced allergic rhinitis rat model was used to evaluate the anti-allergic rhinitis effect of Shenqi. The effect of Shenqi on IgE-mediated degranulation was measured using rat basophilic leukemia (RBL-2H3) cells. Primary spleen lymphocytes were isolated to investigate the anti-allergic mechanism of Shenqi by detecting the expression of transcription factors via Western blot and the level of cytokines (IL-4 and IFN-γ) via ELISA. In OVA-induced AR rat models, Shenqi relieved the allergic rhinitis symptoms, inhibited the histopathological changes of nasal mucosa, and reduced the levels of IL-4 and IgE. The results from the in vitro study certified that Shenqi inhibited mast cell degranulation. Furthermore, the results of GATA3, T-bet, p-STAT6, and SOCS1 expression and production of IFN-γ and IL-4 demonstrated that Shenqi balanced the ratio of Th1/Th2 (IFN-γ/IL-4) in OVA-stimulated spleen lymphocytes. In conclusion, these results suggest that Shenqi exhibits an obvious anti-allergic effect by suppressing the mast cell-mediated allergic response and by improving the imbalance of Th1/Th2 ratio in allergic rhinitis.


Asunto(s)
Antialérgicos/farmacología , Degranulación de la Célula/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Mastocitos/efectos de los fármacos , Mastocitos/fisiología , Balance Th1 - Th2 , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Liberación de Histamina/efectos de los fármacos , Inmunoglobulina E/inmunología , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Ratas , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/inmunología , Rinitis Alérgica/metabolismo
12.
Yao Xue Xue Bao ; 51(10): 1520-9, 2016 10.
Artículo en Zh | MEDLINE | ID: mdl-29932316

RESUMEN

JAK-3, a member of the Janus kinase family, is a protein tyrosine kinase, which plays an important role in the JAK-STAT signaling pathway. Previous studies showed that regulation of JAK-3's activity plays a crucial role in the treatment of diseases such as rheumatoid arthritis. Many reports have been published with a focus on selective JAK-3 inhibitors, some of which showed excellent JAK-3 selectivity and inhibitory activities. Among the JAK-3 inhibitors reported, tofacitinib has satisfactory therapeutic benefits in the clinical trials, and has been approved for treatment of patients with rheumatoid arthritis. However, some JAK-3 inhibitors exhibited moderate to severe side effects, which need to be controlled by drug improvement. In order to pave the way for improvement of current JAK-3 inhibitors and development of new JAK-3 inhibitors, we provide an outline of the structure of JAK-3 and strategies in development of its inhibitors.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Janus Quinasa 3/antagonistas & inhibidores , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Humanos
13.
J Asian Nat Prod Res ; 17(6): 615-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26096035

RESUMEN

Four new norsesquiterpenes wilfordonols A-D (1-4), along with three known compounds, sarmentol B (5), boscialin (6), and (+)-loliolide (7), were isolated from the leaves of Tripterygium wilfordii Hook.f.. The structures of the new compounds were elucidated on the basis of their spectroscopic analysis, and the absolute configuration of the compounds was confirmed by CD and modified Mosher's method. At a concentration of 10 µM, compounds 4, 6, and 7 inhibited signal transducer and activator of transcription 1 translocation by 34.27 ± 1.02%, 48.93 ± 1.76%, and 70.31 ± 2.20%, respectively.


Asunto(s)
Medicamentos Herbarios Chinos/aislamiento & purificación , Sesquiterpenos/aislamiento & purificación , Tripterygium/química , Benzofuranos/química , Benzofuranos/aislamiento & purificación , Ciclohexanoles/química , Ciclohexanoles/aislamiento & purificación , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Hojas de la Planta/química , Sesquiterpenos/química , Sesquiterpenos/farmacología
14.
Yao Xue Xue Bao ; 49(9): 1211-7, 2014 Sep.
Artículo en Zh | MEDLINE | ID: mdl-25518320

RESUMEN

Neuropathological, clinical epidemiology and animal models studies provide clear evidence for the activation of neuroinflammation in Alzheimer's disease (AD), and long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is linked with reduced risk to develop the disease. But the clinical trials got a negative outcome with traditional NSAIDs treating AD. The therapeutic effects of NSAIDs on Alzheimer's disease are still not clear based on the present research. Profound study for anti-inflammatory mechanisms and standardized clinical trials are needed. As cause and effect relationships between neuroinflammation and AD are being worked out, the challenge is how to realize the effect of traditional NSAIDs on treating AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios no Esteroideos/uso terapéutico , Inflamación/tratamiento farmacológico , Animales , Humanos
15.
Adv Healthc Mater ; 13(15): e2304223, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407490

RESUMEN

Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.


Asunto(s)
Inflamación , Lisosomas , Lisosomas/metabolismo , Animales , Ratones , Inflamación/diagnóstico por imagen , Inflamación/inmunología , Fotones , Imagen Óptica/métodos , Colorantes Fluorescentes/química , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Humanos , Ratones Endogámicos C57BL
16.
Chem Sci ; 15(17): 6421-6431, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699264

RESUMEN

Photodynamic immunotherapy (PDI) is an innovative approach to cancer treatment that utilizes photodynamic therapy (PDT) and photosensitizers (PSs) to induce immunogenic cell death (ICD). However, currently most commonly used PSs have restricted capabilities to generate reactive oxygen species (ROS) via a type-II mechanism under hypoxic environments, which limits their effectiveness in PDI. To overcome this, we propose a novel approach for constructing oxygen independent PSs based on stable organic free-radical molecules. By fine-tuning the characteristics of tris(2,4,6-trichlorophenyl)-methyl (TTM) radicals through the incorporation of electron-donating moieties, we successfully found that TTMIndoOMe could produce substantial amounts of ROS even in hypoxic environments. In vitro experiments showed that TTMIndoOMe could effectively produce O2˙-, kill tumor cells and trigger ICD. Moreover, in vivo experiments also demonstrated that TTMIndoOMe could further trigger anti-tumor immune response and exhibit a superior therapeutic effect compared with PDT alone. Our study offers a promising approach towards the development of next-generation PSs functioning efficiently even under hypoxic conditions and also paves the way for the creation of more effective PSs for PDI.

17.
Biomed Chromatogr ; 27(12): 1680-4, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23798357

RESUMEN

Methyl salicylate-2-O-ß-D-lactoside (MSL), a natural salicylate derivative of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis), has been shown to provide a beneficial anti-inflammatory effect in animal models. Studies on the pharmacokinetics and bioavailability of MSL can provide both a substantial foundation for understanding its mechanism and empirical evidence to support its use in clinical practice. A simple and sensitive high-performance liquid chromatography (HPLC) method, coupled with ultraviolet analyte detection, was developed for determining the concentration of MSL and its metabolite in beagle plasma. Chromatographic separation was achieved on a Agilent Zorbax SB-C18 column (5 µM,4.6 × 250 mm). The mobile phase consisted of aqueous solution containing 0.1% phosphoric acid and acetonitrile (82:90, v/v), at a flow rate of 1 mL/min. Validation of the assay demonstrated that the developed HPLC method was sensitive, accurate and selective for the determination of MSL and its metabolite in dog plasma. After orally administering three doses of MSL, it could no longer be detected in dog plasma and its metabolite, salicylic acid, was detected. Salicylic acid showed a single peak in the plasma concentration-time curves and linear pharmacokinetics following the three oral doses (r(2) > 0.99). In contrast, only MSL was detected in plasma following intravenous administration. These results will aid in understanding the pharmacological significance of MSL. The developed method was successfully used for evaluation of the oral and intravenous pharmacokinetic profile of MSL in dogs.


Asunto(s)
Gaultheria/química , Glicósidos/farmacocinética , Extractos Vegetales/química , Salicilatos/farmacocinética , Animales , Cromatografía Líquida de Alta Presión , Perros , Estabilidad de Medicamentos , Glicósidos/sangre , Glicósidos/química , Modelos Lineales , Reproducibilidad de los Resultados , Salicilatos/sangre , Salicilatos/química , Sensibilidad y Especificidad
18.
Artículo en Inglés | MEDLINE | ID: mdl-36865744

RESUMEN

Xuelian, as a traditional Chinese ethnodrug, plays an important role in anti-inflammation, immunoregulation, promoting blood circulation, and other physiological functions. It has been prepared into different traditional Chinese medicine preparations for clinical use, with xuelian koufuye (XL) being widely used to treat rheumatoid arthritis. However, whether XL can relieve inflammatory pain and its analgesic molecular mechanism are still unknown. The present study explored the palliative effect of XL on inflammatory pain and its analgesic molecular mechanism. In complete Freund's adjuvant (CFA)-induced inflammatory joint pain, oral XL dose-dependently improved the mechanical withdrawal threshold of inflammatory pain from an average value of 17.8 g to 26.6 g (P < 0.05) and high doses of XL significantly reduced inflammation-induced ankle swelling from an average value of 3.1 cm to 2.3 cm compared to the model group (P < 0.05). In addition, in carrageenan-induced inflammatory muscle pain rat models, oral XL dose-dependently improved the mechanical withdrawal threshold of inflammatory pain from an average value of 34.3 g to 40.8 g (P < 0.05). The phosphorylated p65 was inhibited in LPS-induced BV-2 microglia and spinal cord of mice in CFA-induced inflammatory joint pain within a value of 75% (P < 0.001) and 52% reduction (P < 0.05) on average, respectively. In addition, the results showed that XL could effectively inhibit the expression and secretion of IL-6 from an average value of 2.5 ng/ml to 0.5 ng/ml (P < 0.001) and TNF-α from 3.6 mg/ml to 1.8 ng/ml with IC50 value of 20.15 µg/mL and 112 µg/mL respectively, by activating the NF-κB signaling pathway in BV-2 microglia (P < 0.001). The above-given results provide a clear understanding of the analgesic activity and mechanism of action not found in XL. Considering the significant effects of XL, it can be evaluated as a novel drug candidate for inflammatory pain, which establishes a new experimental basis for expanding the indications of XL in clinical treatment and suggests a feasible strategy to develop natural analgesic drugs.

19.
Acta Pharm Sin B ; 13(10): 4185-4201, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799385

RESUMEN

Monocytes are key effectors in autoimmunity-related diseases in the central nervous system (CNS) due to the critical roles of these cells in the production of proinflammatory cytokines, differentiation of T-helper (Th) cells, and antigen presentation. The JAK-STAT signaling is crucial for initiating monocytes induced immune responses by relaying cytokines signaling. However, the role of this pathway in modulating the communication between monocytes and Th cells in the pathogenesis of multiple sclerosis (MS) is unclear. Here, we show that the JAK1/2/3 and STAT1/3/5/6 subtypes involved in the demyelination mediated by the differentiation of pathological Th1 and Th17 and the CNS-infiltrating inflammatory monocytes in experimental autoimmune encephalomyelitis (EAE), a model for MS. JAK inhibition prevented the CNS-infiltrating CCR2-dependent Ly6Chi monocytes and monocyte-derived dendritic cells in EAE mice. In parallel, the proportion of GM-CSF+CD4+ T cells and GM-CSF secretion were decreased in pathological Th17 cells by JAK inhibition, which in turns converted CNS-invading monocytes into antigen-presenting cells to mediate tissue damage. Together, our data highlight the therapeutic potential of JAK inhibition in treating EAE by blocking the GM-CSF-driven inflammatory signature of monocytes.

20.
Acta Pharm Sin B ; 13(6): 2778-2794, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425054

RESUMEN

Tolerogenic dendritic cells (tolDCs) facilitate the suppression of autoimmune responses by differentiating regulatory T cells (Treg). The dysfunction of immunotolerance results in the development of autoimmune diseases, such as rheumatoid arthritis (RA). As multipotent progenitor cells, mesenchymal stem cells (MSCs), can regulate dendritic cells (DCs) to restore their immunosuppressive function and prevent disease development. However, the underlying mechanisms of MSCs in regulating DCs still need to be better defined. Simultaneously, the delivery system for MSCs also influences their function. Herein, MSCs are encapsulated in alginate hydrogel to improve cell survival and retention in situ, maximizing efficacy in vivo. The three-dimensional co-culture of encapsulated MSCs with DCs demonstrates that MSCs can inhibit the maturation of DCs and the secretion of pro-inflammatory cytokines. In the collagen-induced arthritis (CIA) mice model, alginate hydrogel encapsulated MSCs induce a significantly higher expression of CD39+CD73+ on MSCs. These enzymes hydrolyze ATP to adenosine and activate A2A/2B receptors on immature DCs, further promoting the phenotypic transformation of DCs to tolDCs and regulating naïve T cells to Tregs. Therefore, encapsulated MSCs obviously alleviate the inflammatory response and prevent CIA progression. This finding clarifies the mechanism of MSCs-DCs crosstalk in eliciting the immunosuppression effect and provides insights into hydrogel-promoted stem cell therapy for autoimmune diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA