Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 178(2): 413-428.e22, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31230710

RESUMEN

Social interactions occur between multiple individuals, but what is the detailed relationship between the neural dynamics across their brains? To address this question across timescales and levels of neural activity, we used wireless electrophysiology to simultaneously record from pairs of bats engaged in a wide range of natural social interactions. We found that neural activity was remarkably correlated between their brains over timescales from seconds to hours. The correlation depended on a shared social environment and was most prominent in high frequency local field potentials (>30 Hz), followed by local spiking activity. Furthermore, the degree of neural correlation covaried with the extent of social interactions, and an increase in correlation preceded their initiation. These results show that inter-brain correlation is an inherent feature of natural social interactions, reveal the domain of neural activity where it is most prominent, and provide a foundation for studying its functional role in social behaviors.


Asunto(s)
Encéfalo/fisiología , Quirópteros/fisiología , Neuronas/fisiología , Potenciales de Acción , Animales , Femenino , Masculino , Conducta Social , Tecnología Inalámbrica
2.
Pharm Dev Technol ; 25(2): 260-265, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31709858

RESUMEN

Pectin-based hydrogel microcarriers have shown promise for drug delivery to the colonic region. Microcarriers must remain stable throughout the upper gastrointestinal tract for effective colonic delivery, an issue that traditional pectin-based microcarriers have faced. The positively-charged natural biopolymer oligochitosan and divalent cation Ca2+ were used to dually cross-link pectin-based hydrogel microcarriers to improve carrier stability through simulated gastric and intestinal environments. Microcarriers were characterized with Scanning Electron Microscope and Fourier-Transform Infrared analysis. An optical microscope was used to observe the change of microcarrier size and morphology over time in the simulated gastrointestinal environments. Fluorescently-labeled Dextran was used as a model drug for this system. Calcium-Oligochitosan-Pectin microcarriers exhibited relatively small drug release in the upper gastrointestinal regions and were responsive to the high pH and enzymatic activity of simulated colonic environment (over 94% release after 2 h), suggesting great potential for colonic drug delivery.


Asunto(s)
Calcio/química , Quitina/análogos & derivados , Colon/efectos de los fármacos , Portadores de Fármacos/química , Pectinas/química , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Química Farmacéutica/métodos , Quitina/química , Quitosano , Sistemas de Liberación de Medicamentos/métodos , Concentración de Iones de Hidrógeno , Oligosacáridos , Solubilidad/efectos de los fármacos
3.
Pharm Dev Technol ; 21(1): 127-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25255173

RESUMEN

Pectin-based hydrogel carriers have been studied and shown to have promising applications for drug delivery to the lower GI tract, especially to the colonic region. However, making sure these hydrogel carriers can pass through the upper GI tract and reach the targeted regions, after oral administration, still remains a challenge to overcome. A solution to this problem is to promote stronger cross-linking interactions within the pectin-based hydrogel network. The combined usage of a divalent cation (Ca(2+)) and the cationic biopolymer oligochitosan has shown to improve the stability of pectin-based hydrogel systems - suggesting that these two cross-linkers may be used to eventually help improve pectin-based hydrogel systems for colonic drug delivery methods.


Asunto(s)
Colon , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Pectinas/química , Colon/efectos de los fármacos , Portadores de Fármacos/administración & dosificación , Pectinas/administración & dosificación
4.
J Neurosci ; 33(2): 722-33, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303950

RESUMEN

Recent electrophysiological studies on the primate amygdala have advanced our understanding of how individual neurons encode information relevant to emotional processes, but it remains unclear how these neurons are functionally and anatomically organized. To address this, we analyzed cross-correlograms of amygdala spike trains recorded during a task in which monkeys learned to associate novel images with rewarding and aversive outcomes. Using this task, we have recently described two populations of amygdala neurons: one that responds more strongly to images predicting reward (positive value-coding), and another that responds more strongly to images predicting an aversive stimulus (negative value-coding). Here, we report that these neural populations are organized into distinct, but anatomically intermingled, appetitive and aversive functional circuits, which are dynamically modulated as animals used the images to predict outcomes. Furthermore, we report that responses to sensory stimuli are prevalent in the lateral amygdala, and are also prevalent in the medial amygdala for sensory stimuli that are emotionally significant. The circuits identified here could potentially mediate valence-specific emotional behaviors thought to involve the amygdala.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Animales , Conducta Animal/fisiología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Emociones/fisiología , Fijación Ocular , Macaca mulatta , Masculino , Neuronas/fisiología , Estimulación Luminosa , Refuerzo en Psicología , Recompensa , Sensación/fisiología
5.
Tissue Eng Part A ; 30(3-4): 115-130, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37930721

RESUMEN

Bone marrow-derived mesenchymal stem cells (BMSCs) have been recognized as new candidates for the treatment of serious endometrial injuries. However, owing to the local microenvironment of damaged endometrium, transplantation of BMSCs yielded disappointing results. In this study, Pectin-Pluronic® F-127 hydrogel as scaffolds were fabricated to provide three-dimensional architecture for the attachment, growth, and migration of BMSCs. E2 was encapsulated into the W/O/W microspheres to construct pectin-based E2-loaded microcapsules (E2 MPs), which has the potential to serve as a long-term reliable source of E2 for endometrial regeneration. Then, the BMSCs/E2 MPs/scaffolds system was injected into the uterine cavity of mouse endometrial injury model for treatment. At 4 weeks after transplantation, the system increased proliferative abilities of uterine endometrial cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive an embryo, suggesting that the BMSCs/E2 MPs/scaffolds system is a promising treatment option for endometrial regeneration. Furthermore, the mechanism of E2 in promoting the repair of endometrial injury was also investigated. Exosomes are critical paracrine mediators that act as biochemical cues to direct stem cell differentiation. In this study, it was found that the expression of endometrial epithelial cell (EEC) markers was upregulated in BMSCs treated by exosomes secreted from endometrial stromal cells (ESCs-Exos). Exosomes derived from E2-stimulated ESCs further promoted the expression level of EECs markers in BMSCs, suggesting exosomes released from ESCs by E2 stimulation could enhance the differentiation efficiency of BMSCs. Therefore, exosomes derived from ESCs play paracrine roles in endometrial regeneration stimulated by E2 and provide optimal estrogenic response.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratas , Animales , Femenino , Ratones , Médula Ósea , Cápsulas/metabolismo , Ratas Sprague-Dawley , Trasplante de Células Madre Mesenquimatosas/métodos , Endometrio/metabolismo , Modelos Animales de Enfermedad , Pectinas
6.
Gels ; 9(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37754388

RESUMEN

Pulmonary drug delivery via microspheres has gained growing interest as a noninvasive method for therapy. However, drug delivery through the lungs via inhalation faces great challenges due to the natural defense mechanisms of the respiratory tract, such as the removal or deactivation of drugs. This study aims to develop a natural polymer-based microsphere system with a diameter of around 3 µm for encapsulating pulmonary drugs and facilitating their delivery to the deep lungs. Pectin was chosen as the foundational material due to its biocompatibility and degradability in physiological environments. Electrospray was used to produce the pectin-based hydrogel microspheres, and Design-Expert software was used to optimize the production process for microsphere size and uniformity. The optimized conditions were determined to be as follows: pectin/PEO ratio of 3:1, voltage of 14.4 kV, distance of 18.2 cm, and flow rate of 0.95 mL/h. The stability and responsiveness of the pectin-based hydrogel microspheres can be altered through coatings such as gelatin. Furthermore, the potential of the microspheres for pulmonary drug delivery (i.e., their responsiveness to the deep lung environment) was investigated. Successfully coated microspheres with 0.75% gelatin in 0.3 M mannitol exhibited improved stability while retaining high responsiveness in the simulated lung fluid (Gamble's solution). A gelatin-coated pectin-based microsphere system was developed, which could potentially be used for targeted drug delivery to reach the deep lungs and rapid release of the drug.

7.
Bioengineering (Basel) ; 9(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36550991

RESUMEN

Currently, there are more than 100,000 people on the US national transplant waiting list, and 17 people die each day waiting for an organ transplant [...].

8.
Elife ; 112022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35142287

RESUMEN

A key goal of social neuroscience is to understand the inter-brain neural relationship-the relationship between the neural activity of socially interacting individuals. Decades of research investigating this relationship have focused on the similarity in neural activity across brains. Here, we instead asked how neural activity differs between brains, and how that difference evolves alongside activity patterns shared between brains. Applying this framework to bats engaged in spontaneous social interactions revealed two complementary phenomena characterizing the inter-brain neural relationship: fast fluctuations of activity difference across brains unfolding in parallel with slow activity covariation across brains. A model reproduced these observations and generated multiple predictions that we confirmed using experimental data involving pairs of bats and a larger social group of bats. The model suggests that a simple computational mechanism involving positive and negative feedback could explain diverse experimental observations regarding the inter-brain neural relationship.


Asunto(s)
Quirópteros , Interacción Social , Animales , Encéfalo , Humanos
9.
J Mol Model ; 28(8): 232, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882698

RESUMEN

Current biopharmaceutical drugs are mainly a class of peptides or proteins that play an essential role in the treatment of many diseases. Such peptides/proteins are usually thermally unstable and may lose their bioactivity when exposed to ambient conditions. Therefore, they are not suitable for long-term storage. Lyophilisation is the most common method to prolong shelf life of solid peptide/protein drugs; however, the freeze-drying process can lead to irreversible damage. In the present study, human interferon-alpha 2a (IFN-α2a) was selected as a model protein drug; four disaccharides (ß-lactose, ß-maltose, sucrose, and trehalose) were selected as bioactive protectants. We investigated the effects of different protectants on IFN-α2a under various ambient conditions (vacuum, dry state, and aqueous solution) using replica exchange molecular dynamics simulation. The protective effect of ß-maltose on IFN-α2a was the highest in aqueous solution and dry state, ß-lactose showed a poor protective effect in all three conditions, the performance of sucrose was good in all conditions, and trehalose showed a better protective effect under vacuum conditions and in aqueous solution. Disaccharides form H-bonds with water, thereby preventing water from the tertiary structure of proteins. Trehalose forms strong H-bonds with water which explains its extraordinary stability.


Asunto(s)
Maltosa , Trehalosa , Disacáridos/química , Disacáridos/farmacología , Humanos , Lactosa/química , Maltosa/química , Simulación de Dinámica Molecular , Sacarosa/química , Trehalosa/química , Trehalosa/farmacología , Agua/química
10.
Pharmaceutics ; 15(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36678719

RESUMEN

The development of vascularized tissue is a substantial challenge within the field of tissue engineering and regenerative medicine. Studies have shown that positively-charged microspheres exhibit dual-functions: (1) facilitation of vascularization and (2) controlled release of bioactive compounds. In this study, gelatin-coated microspheres were produced and processed with either EDC or transglutaminase, two crosslinkers. The results indicated that the processing stages did not significantly impact the size of the microspheres. EDC and transglutaminase had different effects on surface morphology and microsphere stability in a simulated colonic environment. Incorporation of EGM and TGM into bioink did not negatively impact bioprintability (as indicated by density and kinematic viscosity), and the microspheres had a uniform distribution within the scaffold. These microspheres show great potential for tissue engineering applications.

11.
RSC Adv ; 12(43): 27963-27969, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320274

RESUMEN

In this study, we report a one-pot synthesis and enzyme-responsiveness of polyethylene glycol (PEG) and glutamic acid (Glu)-based amphiphilic doxorubicin (DOX) prodrug nanomicelles for cancer therapeutics. The nanomicelles were accomplished by esterification and amidation reactions. The nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) data confirmed the structure of nanomicelles. The DOX-loaded nanomicelles showed a DLS-measured average size of 107 nm and excellent stability in phosphate-buffered saline (PBS) for 7 days. The drug loading and cumulative release rates were measured by ultraviolet-visible (UV-vis) spectrophotometry at 481 nm. The cumulative release rate could reach 100% in an enzyme-rich environment. Further, the therapeutic efficiency of nanomicelles to cancer cells was determined by cell viability and cellular uptake and distribution using HeLa cells. The cell viability study showed that the DOX-loaded nanomicelles could effectively inhibit the HeLa cell proliferation. The cellular uptake study confirmed that the nanomicelles could be effectively ingested by HeLa cells and distributed into cell nuclei. Based on the collective experimental data, this study demonstrated that the synthesized nanomicellar prodrug of DOX is a potential candidate for cancer therapeutics.

12.
Biomacromolecules ; 12(6): 2171-7, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21526864

RESUMEN

We have carried out the synthesis of side-chain rosin-ester-structured poly(ε-caprolactone) (PCL) through a combination of ring-opening polymerization and click chemistry. Rosin structures are shown to be effectively incorporated into each repeat unit of caprolactone. This simple and versatile methodology does not require sophisticated purification of raw renewable biomass from nature. The rosin properties have been successfully imparted to the PCL polymers. The bulky hydrophenanthrene group of rosin increases the glass-transition temperature of PCL by >100 °C, whereas the hydrocarbon nature of rosin structures provides PCL excellent hydrophobicity with contact angle very similar to polystyrene and very low water uptake. The rosin-containing PCL graft copolymers exhibit full degradability and good biocompatibility. This study illustrates a general strategy to prepare a new class of renewable hydrocarbon-rich degradable biopolymers.


Asunto(s)
Materiales Biocompatibles/síntesis química , Ésteres/síntesis química , Poliésteres/síntesis química , Polímeros/síntesis química , Resinas de Plantas/química , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Biodegradación Ambiental , Proliferación Celular/efectos de los fármacos , Química Clic , Ésteres/metabolismo , Ésteres/farmacología , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Peso Molecular , Fenantrenos/química , Poliésteres/metabolismo , Poliésteres/farmacología , Polimerizacion , Polímeros/metabolismo , Polímeros/farmacología , Resinas de Plantas/metabolismo , Resinas de Plantas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura de Transición , Agua/química
13.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641153

RESUMEN

A major challenge in tissue engineering is the formation of vasculature in tissue and organs. Recent studies have shown that positively charged microspheres promote vascularization, while also supporting the controlled release of bioactive molecules. This study investigated the development of gelatin-coated pectin microspheres for incorporation into a novel bioink. Electrospray was used to produce the microspheres. The process was optimized using Design-Expert® software. Microspheres underwent gelatin coating and EDC catalysis modifications. The results showed that the concentration of pectin solution impacted roundness and uniformity primarily, while flow rate affected size most significantly. The optimal gelatin concentration for microsphere coating was determined to be 0.75%, and gelatin coating led to a positively charged surface. When incorporated into bioink, the microspheres did not significantly alter viscosity, and they distributed evenly in bioink. These microspheres show great promise for incorporation into bioink for tissue engineering applications.

14.
J Biomed Nanotechnol ; 17(9): 1798-1805, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688324

RESUMEN

A pectin-oligochitosan microcapsule system has recently been developed for novel oxygen therapeutic design. To improve the stability of the pectin-oligochitosan microcapsules in physiological conditions, both covalent (glutaraldehyde) and noncovalent (Mn2+ and Ca2+) cross-linkers were tested. The chemistry and morphology of the microcapsules were studied using FTIR and SEM, respectively. Results showed that glutaraldehyde is an effective cross-linker, even at low concentrations and short incubation times, and the glutaraldehyde cross-linking does not negatively impact the morphology of the microcapsules. Moreover, it was confirmed that the hemoglobin could be retained within the microcapsules with a minimal release.


Asunto(s)
Oxígeno , Pectinas , Cápsulas , Eritrocitos
15.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35009978

RESUMEN

This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of -36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.

16.
Biomed Microdevices ; 12(1): 89-96, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19787454

RESUMEN

The morphological changes of small (approximately 100 microm) alginate microcapsules and the biophysical alterations of water in the microcapsules during cryopreservation were studied using cryomicroscopy and scanning calorimetry. It was found that water in the small microcapsules can be preferentially vitrified over water in the bulk solution in the presence of 10% (v/v) or more dimethylsulfoxide (DMSO, a cryoprotectant), which resulted in an intact morphology of the microcapsules post cryopreservation with a cooling rate of 100 degrees Celsius/min. A small amount of Ca(2+) (up to 0.15 M) was also found to help maintain the microcapsule integrity during cryopreservation, which is attributed to the enhancement of the alginate matrix strength by Ca(2+) rather than promoting vitrification of water in the microcapsules. The preferential vitrification of water in small microcapsules was further found to significantly augment cell cryopreservation by vitrification at a low concentration of cryoprotectants (i.e., 10% (v/v)) using a small quartz microcapillary (400 microm in diameter). Therefore, the small alginate microcapsule could be a great system for protecting living cells that are highly sensitive to stresses due to freezing (i.e., ice formation) and high concentration of cryoprotectants from injury during cryopreservation.


Asunto(s)
Alginatos/química , Criopreservación/métodos , Portadores de Fármacos/química , Células Madre Mesenquimatosas/citología , Soluciones Preservantes de Órganos/química , Agua/química , Cápsulas , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Ensayo de Materiales , Células Madre Mesenquimatosas/fisiología , Transición de Fase
17.
Nanotechnology ; 20(27): 275101, 2009 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-19528681

RESUMEN

The thermally responsive wall permeability of an empty core-shell structured Pluronic nanocapsule (together with its temperature dependent size and surface charge) was successfully utilized for encapsulation, intracellular delivery, and controlled release of trehalose, a highly hydrophilic small (M(W) = 342 D) molecule (a disaccharide of glucose) that is exceptional for long-term stabilization of biologicals (particularly at ambient temperatures). It was found that trehalose can be physically encapsulated in the nanocapsule using a soaking-freeze-drying-heating procedure. The nanocapsule is capable of physically withholding trehalose with negligible release in hours for cellular uptake at 37 degrees C when its wall permeability is low. A quick release of the encapsulated sugar can be achieved by thermally cycling the nanocapsule between 37 and 22 degrees C (or lower). A significant amount of trehalose (up to 0.3 M) can be delivered into NIH 3T3 fibroblasts by incubating the cells with the trehalose-encapsulated nanocapsules at 37 degrees C for 40 min. Moreover, cytotoxicity of the nanocapsule for the purpose of intracellular delivery of trehalose was found to be negligible. Altogether, the thermally responsive nanocapsule is effective for intracellular delivery of trehalose, which is critical for the long-term stabilization of mammalian cells at ambient temperatures and the eventual success of modern cell-based medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanocápsulas/química , Trehalosa/química , Trehalosa/farmacocinética , Animales , Línea Celular , Permeabilidad de la Membrana Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno/metabolismo , Preparaciones de Acción Retardada , Iminas/administración & dosificación , Iminas/química , Iminas/farmacocinética , Ratones , Microscopía Confocal , Células 3T3 NIH , Nanocápsulas/administración & dosificación , Poloxámero/administración & dosificación , Poloxámero/química , Poloxámero/farmacocinética , Polietilenos/administración & dosificación , Polietilenos/química , Polietilenos/farmacocinética , Temperatura , Trehalosa/administración & dosificación
18.
Sci Total Environ ; 649: 172-185, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30173027

RESUMEN

Individual users cannot readily access the collection channels is a persistent problem in municipal solid waste (MSW) management, resulting in low MSW collection rates. A new waste management model, "Internet+Recycling", has come into being; this model enables individuals to arrange collection appointment through various online platforms, then the collectors pick up the waste on-site. It is believed that "Internet+Recycling" can be a solution to mitigate the collection barrier in MSW management, as it provides individuals a convenient access to formal waste management systems. However, whether this emerging MSW collection model would bring environmental benefits is yet unknown. We here quantitatively examine the mass balance and environmental performance of MSW recycling associated with the use of such a "Internet+Recycling" mobile application - Aibolv. All transactions occurred on the mobile application within a period of six monthare included, and all related activities are modeled using the methodology that combines material flow analysis (MFA) and life cycle assessment (LCA). According to the extant MSW management legislation in China, we classify the collected MSW into three categories, subsidized waste electric and electronic equipment (WEEE) like television and refrigerator - T1, unsubsidized WEEE like mobile phone - T2, and other recyclables like paper and fabric - T3. The MFA results show that plastics and common metals are the dominate secondary material streams, and glass, precious metals and battery metals are mainly recovered from WEEE. The LCA results indicate that the disposal of the T2 waste has the highest environmental savings, due to the recovery of precious metals. Increased remanufacturing rates impart negative impacts, while increments in the quantity of spent mobile phones could significantly improve overall environmental performance. Based on the acquired results, recommendations are provided for facilitating the future development of "Internet+Recycling", and limitations of this work are identified as well.

19.
J Appl Biomater Funct Mater ; 17(1): 2280800018807108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30803313

RESUMEN

PURPOSE:: Bioprinting is an alternative method for constructing tissues/organs for transplantation. This study investigated the cross-linker influence and post-printing modification using oligochitosan and chitosan for stability improvement. METHODS:: Oligochitosan was tested as a novel cross-linker to replace Ca2+ for pectin-based bio-ink. Oligochitosan (2 kD) and different molecular weight of chitosan were used to modify the bioprinted scaffold. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to characterize the scaffolds. RESULTS:: Oligochitosan failed to serve as a viable cross-linker. Successful post-printing modification was confirmed by FTIR and SEM analyses. CONCLUSION:: Regarding post-modification, chitosan-treated scaffolds showed enhanced stability compared to untreated scaffolds. In particular, scaffolds modified with 150 kD chitosan exhibited the highest stability.


Asunto(s)
Bioimpresión/métodos , Pectinas/química , Andamios del Tejido/química , Calcio/química , Quitina/análogos & derivados , Quitina/química , Quitosano , Tinta , Microscopía Electrónica de Rastreo , Oligosacáridos , Poloxámero/química , Espectroscopía Infrarroja por Transformada de Fourier
20.
Pharmaceutics ; 11(11)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703298

RESUMEN

The goal of this research was to develop a novel oxygen therapeutic made from a pectin-based hydrogel microcapsule carrier mimicking red blood cells. The study focused on three main criteria for developing the oxygen therapeutic to mimic red blood cells: size (5-10 µm), morphology (biconcave shape), and functionality (encapsulation of oxygen carriers; e.g., hemoglobin (Hb)). The hydrogel carriers were generated via the electrospraying of the pectin-based solution into an oligochitosan crosslinking solution using an electrospinning setup. The pectin-based solution was investigated first to develop the simplest possible formulation for electrospray. Then, Design-Expert® software was used to optimize the production process of the hydrogel microcapsules. The optimal parameters were obtained through the analysis of a total of 17 trials and the microcapsule with the desired morphology and size was successfully prepared under the optimized condition. Fourier transform infrared spectroscopy (FTIR) was used to analyze the chemistry of the microcapsules. Moreover, the encapsulation of Hb into the microcapsule did not adversely affect the microcapsule preparation process, and the encapsulation efficiency was high (99.99%). The produced hydrogel microcapsule system shows great promise for creating a novel oxygen therapeutic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA