Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(9): e2305798, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37849041

RESUMEN

As the most popular liquid metal (LM), gallium (Ga) and its alloys are emerging as functional materials due to their unique combination of fluidic and metallic properties near room temperature. As an important branch of utilizing LMs, micro- and submicron-particles of Ga-based LM are widely employed in wearable electronics, catalysis, energy, and biomedicine. Meanwhile, the phase transition is crucial not only for the applications based on this reversible transformation process, but also for the solidification temperature at which fluid properties are lost. While Ga has several solid phases and exhibits unusual size-dependent phase behavior. This complex process makes the phase transition and undercooling of Ga uncontrollable, which considerably affects the application performance. In this work, extensive (nano-)calorimetry experiments are performed to investigate the polymorph selection mechanism during liquid Ga crystallization. It is surprisingly found that the crystallization temperature and crystallization pathway to either α -Ga or ß -Ga can be effectively engineered by thermal treatment and droplet size. The polymorph selection process is suggested to be highly relevant to the capability of forming covalent bonds in the equilibrium supercooled liquid. The observation of two different crystallization pathways depending on the annealing temperature may indicate that there exist two different liquid phases in Ga.

2.
Sensors (Basel) ; 24(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38475176

RESUMEN

Elastic pressure sensors play a crucial role in the digital economy, such as in health care systems and human-machine interfacing. However, the low sensitivity of these sensors restricts their further development and wider application prospects. This issue can be resolved by introducing microstructures in flexible pressure-sensitive materials as a common method to improve their sensitivity. However, complex processes limit such strategies. Herein, a cost-effective and simple process was developed for manufacturing surface microstructures of flexible pressure-sensitive films. The strategy involved the combination of MXene-single-walled carbon nanotubes (SWCNT) with mass-produced Polydimethylsiloxane (PDMS) microspheres to form advanced microstructures. Next, the conductive silica gel films with pitted microstructures were obtained through a 3D-printed mold as flexible electrodes, and assembled into flexible resistive pressure sensors. The sensor exhibited a sensitivity reaching 2.6 kPa-1 with a short response time of 56 ms and a detection limit of 5.1 Pa. The sensor also displayed good cyclic stability and time stability, offering promising features for human health monitoring applications.

3.
Nanomedicine ; 10(4): 839-49, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24183999

RESUMEN

Understanding the excretion pathway is one of the most important prerequisites for the safe use of nanoparticles in biomedicine. However, the excretion of nanoparticles in animals remains largely unknown, except for some particles very small in size. Here we report a novel natural pathway for nanoparticle excretion, the intestinal goblet cell (GC) secretion pathway (IGCSP). Direct live observation of the behavior of 30-200nm activated carbon nanoparticles (ACNP) demonstrated that ACNP microinjected into the yolk sac of zebrafish can be excreted directly through intestinal tract without involving the hepato-biliary (hap-bile) system. Histopathological examination in mice after ligation of the common bile duct (CBD) demonstrated that the intravenously-injected ACNP were excreted into the gut lumen through the secretion of intestinal GCs. ACNP in various secretion phases were revealed by histopathological examination and transmission electron microscopy (TEM). IGCSP, in combination with renal and hap-bile pathways, constitutes a complete nanoparticle excretion mechanism. FROM THE CLINICAL EDITOR: Nanoparticle elimination pathways are in the forefront of interest in an effort to optimize and enable nanomedicine applications. This team of authors reports a novel natural pathway for nanoparticle excretion, the intestinal goblet cell (GC) secretion pathway (IGCSP). Direct live observation of the behavior of activated carbon nanoparticles has shown excretion directly through the intestinal tract without involving the hepato-biliary (hap-bile) system in a zebrafish model.


Asunto(s)
Células Caliciformes/metabolismo , Nanopartículas , Vías Secretoras , Animales , Conductos Biliares/citología , Conductos Biliares/metabolismo , Células Caliciformes/citología , Hígado/citología , Hígado/metabolismo , Ratones , Saco Vitelino/citología , Saco Vitelino/metabolismo , Pez Cebra
4.
ACS Appl Mater Interfaces ; 15(18): 22291-22300, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37127569

RESUMEN

Ga-based liquid metal stretchable conductors have recently gained interest in flexible electronic devices such as electrodes, antennas, and sensors. It is essential to maintain electrical stability under strain or cyclic strain for reliable data acquisition and exhibit tough interfacial bonding between liquid metal and polymers to prevent performance loss and device failure. Herein, a highly stable conductor with superior electrical stability and tough interface bonding is introduced by casting curable polymers and a peeling-activated process from liquid metal particles. Based on the compensating effect of liquid metal, similar to the recharge relationship of water between rivers and lakes in nature, the conductor is not only strain-insensitive (ΔR/R0 < 10% for 100% strain) but also immune to cyclic deformation (ΔR/R0 < 7% with 5000 stretching cycles at 50% strain). Embedding liquid metal within the elastomer to create stretchable conductors effectively improves interfacial adhesion properties (the fluid-solid interfacial adhesion force increases from 0.48 to 0.62 mN/mm2). The constructed tough interface could even withstand sonication treatment. Finally, by combining strategies in material design and fabrication, an integrated array composed of vertical interconnect access and robust electrodes is fabricated, which simultaneously holds tough interfacial bonding with the upper and lower layers.

5.
Adv Sci (Weinh) ; : e2304409, 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37953443

RESUMEN

Flexible pressure sensors are crucial force-sensitive devices in wearable electronics, robotics, and other fields due to their stretchability, high sensitivity, and easy integration. However, a limitation of existing pressure sensors is their reduced sensing accuracy when subjected to stretching. This study addresses this issue by adopting finite element simulation optimization, using digital light processing (DLP) 3D printing technology to design and fabricate the force-sensitive structure of flexible pressure sensors. This is the first systematic study of how force-sensitive structures enhance tensile strain stability of flexible resistive pressure sensors. 18 types of force-sensitive structures have been investigated by finite element design, simultaneously, the modulus of the force-sensitive structure is also a critical consideration as it exerts a significant influence on the overall tensile stability of the sensor. Based on simulation results, a well-designed and highly stretch-stable flexible resistive pressure sensor has been fabricated which exhibits a resistance change rate of 0.76% and pressure sensitivity change rate of 0.22% when subjected to strains ranging from no tensile strain to 20% tensile strain, demonstrating extremely low stretching response characteristics. This study presents innovative solutions for designing and fabricating flexible resistive pressure sensors that maintain stable sensing performance even under stretch conditions.

6.
Nanoscale Res Lett ; 7(1): 665, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23216680

RESUMEN

This work is aimed to evaluate a method to detect the residual magnetic nanoparticles (MNPs) in animal tissues. Ferric ions released from MNPs through acidification with hydrochloric acid can be measured by complexation with potassium thiocyanate. MNPs in saline could be well detected by this chemical colorimetric method, whereas the detected sensitivity decreased significantly when MNPs were mixed with mouse tissue homogenates. In order to check the MNPs in animal tissues accurately, three improvements have been made. Firstly, proteinase K was used to digest the proteins that might bind with iron, and secondly, ferrosoferric oxide (Fe3O4) was collected by a magnetic field which could capture MNPs and leave the bio-iron in the supernatant. Finally, the collected MNPs were carbonized in the muffle furnace at 420°C before acidification to ruin the groups that might bind with ferric ions such as porphyrin. Using this method, MNPs in animal tissues could be well measured while avoiding the disturbance of endogenous iron and iron-binding groups.

7.
Nanoscale Res Lett ; 6: 555, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-21995320

RESUMEN

Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA