Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(12): 2656-2671.e18, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295403

RESUMEN

Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.


Asunto(s)
Brassica napus , Plasmodiophorida , Microscopía por Crioelectrón , Plomo , Brassica napus/genética , Plasmodiophorida/fisiología , Canales Iónicos , Enfermedades de las Plantas
2.
Nature ; 583(7818): 830-833, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380511

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Pulmón/patología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , Transgenes , Enzima Convertidora de Angiotensina 2 , Animales , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , Bronquios/patología , Bronquios/virología , COVID-19 , Infecciones por Coronavirus/inmunología , Modelos Animales de Enfermedad , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Humanos , Inmunoglobulina G/inmunología , Pulmón/inmunología , Pulmón/virología , Linfocitos/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Masculino , Ratones , Ratones Transgénicos , Pandemias , Neumonía Viral/inmunología , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/metabolismo , SARS-CoV-2 , Replicación Viral , Pérdida de Peso
3.
Mol Cell ; 69(3): 493-504.e6, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29358080

RESUMEN

Plant pattern recognition receptors (PRRs) perceive microbial and endogenous molecular patterns to activate immune signaling. The cytoplasmic kinase BIK1 acts downstream of multiple PRRs as a rate-limiting component, whose phosphorylation and accumulation are central to immune signal propagation. Previous work identified the calcium-dependent protein kinase CPK28 and heterotrimeric G proteins as negative and positive regulators of BIK1 accumulation, respectively. However, mechanisms underlying this regulation remain unknown. Here we show that the plant U-box proteins PUB25 and PUB26 are homologous E3 ligases that mark BIK1 for degradation to negatively regulate immunity. We demonstrate that the heterotrimeric G proteins inhibit PUB25/26 activity to stabilize BIK1, whereas CPK28 specifically phosphorylates conserved residues in PUB25/26 to enhance their activity and promote BIK1 degradation. Interestingly, PUB25/26 specifically target non-activated BIK1, suggesting that activated BIK1 is maintained for immune signaling. Our findings reveal a multi-protein regulatory module that enables robust yet tightly regulated immune responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/metabolismo , Citoplasma , Citosol , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis , Fosforilación , Inmunidad de la Planta/fisiología , Proteínas de Plantas , Transducción de Señal , Factores de Transcripción
4.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39136558

RESUMEN

Sex chromosomes display remarkable diversity and variability among vertebrates. Compared with research on the X/Y and Z/W chromosomes, which have long evolutionary histories in mammals and birds, studies on the sex chromosomes at early evolutionary stages are limited. Here, we precisely assembled the genomes of homozygous XX female and YY male Lanzhou catfish (Silurus lanzhouensis) derived from an artificial gynogenetic family and a self-fertilized family, respectively. Chromosome 24 (Chr24) was identified as the sex chromosome based on resequencing data. Comparative analysis of the X and Y chromosomes showed an approximate 320 kb Y-specific region with a Y-specific duplicate of anti-Mullerian hormone type II receptor (amhr2y), which is consistent with findings in 2 other Silurus species but on different chromosomes (Chr24 of Silurus meridionalis and Chr5 of Silurus asotus). Deficiency of amhr2y resulted in male-to-female sex reversal, indicating that amhr2y plays a male-determining role in S. lanzhouensis. Phylogenetic analysis and comparative genomics revealed that the common sex-determining gene amhr2y was initially translocated to Chr24 of the Silurus ancestor along with the expansion of transposable elements. Chr24 was maintained as the sex chromosome in S. meridionalis and S. lanzhouensis, whereas a sex-determining region transition triggered sex chromosome turnover from Chr24 to Chr5 in S. asotus. Additionally, gene duplication, translocation, and degeneration were observed in the Y-specific regions of Silurus species. These findings present a clear case for the early evolutionary trajectory of sex chromosomes, including sex-determining gene origin, repeat sequence expansion, gene gathering and degeneration in sex-determining region, and sex chromosome turnover.


Asunto(s)
Bagres , Procesos de Determinación del Sexo , Animales , Masculino , Femenino , Bagres/genética , Evolución Molecular , Filogenia , Cromosomas Sexuales/genética , Cromosoma Y/genética , Genoma , Cromosoma X/genética , Receptores de Péptidos , Receptores de Factores de Crecimiento Transformadores beta
5.
J Immunol ; 210(4): 377-388, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36602759

RESUMEN

The activation of lymphocytes in patients with lupus and in mouse models of the disease is coupled with an increased cellular metabolism in which glucose plays a major role. The pharmacological inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reversed the expansion of follicular helper CD4+ T cells and germinal center B cells in lupus-prone mice, as well as the production of autoantibodies. The response of foreign Ags was however not affected by 2DG in these mice, suggesting that B and CD4+ T cell activation by autoantigens is uniquely sensitive to glycolysis. In this study, we tested this hypothesis with monoclonal B cells and CD4+ T cells specific for lupus-relevant autoantigens. AM14 Vκ8R (AM14) transgenic B cells are activated by IgG2a/chromatin immune complexes and they can receive cognate help from chromatin-specific 13C2 CD4+ T cells. We showed that activation of AM14 B cells by their cognate Ag PL2-3 induced glycolysis, and that the inhibition of glycolysis reduced their activation and differentiation into Ab-forming cells, in the absence or presence of T cell help. The dependency of autoreactive B cells on glycolysis is in sharp contrast with the previously reported dependency of 4-hydroxy-3-nitrophenyl acetyl-specific B cells on fatty acid oxidation. Contrary to AM14 B cells, the activation and differentiation of 13C2 T cells into follicular helper CD4+ T cells was not altered by 2DG, which differs from polyclonal CD4+ T cells from lupus-prone mice. These results further define the role of glycolysis in the production of lupus autoantibodies and demonstrate the need to evaluate the metabolic requirements of Ag-specific B and T cells.


Asunto(s)
Linfocitos T CD4-Positivos , Lupus Eritematoso Sistémico , Linfoma de Células B , Animales , Ratones , Autoanticuerpos , Autoantígenos/metabolismo , Cromatina/metabolismo , Glucosa/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Activación de Linfocitos , Linfocitos T Colaboradores-Inductores
6.
Mol Ther ; 32(7): 2264-2285, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702887

RESUMEN

Overexpression of vesicular stomatitis virus G protein (VSV-G) elevates the secretion of EVs known as gectosomes, which contain VSV-G. Such vesicles can be engineered to deliver therapeutic macromolecules. We investigated viral glycoproteins from several viruses for their potential in gectosome production and intracellular cargo delivery. Expression of the viral glycoprotein (viral glycoprotein from the Chandipura virus [CNV-G]) from the human neurotropic pathogen Chandipura virus in 293T cells significantly augments the production of CNV-G-containing gectosomes. In comparison with VSV-G gectosomes, CNV-G gectosomes exhibit heightened selectivity toward specific cell types, including primary cells and tumor cell lines. Consistent with the differential tropism between CNV-G and VSV-G gectosomes, cellular entry of CNV-G gectosome is independent of the Low-density lipoprotein receptor, which is essential for VSV-G entry, and shows varying sensitivity to pharmacological modulators. CNV-G gectosomes efficiently deliver diverse intracellular cargos for genomic modification or responses to stimuli in vitro and in the brain of mice in vivo utilizing a split GFP and chemical-induced dimerization system. Pharmacokinetics and biodistribution analyses support CNV-G gectosomes as a versatile platform for delivering macromolecular therapeutics intracellularly.


Asunto(s)
Vesiculovirus , Animales , Humanos , Ratones , Vesiculovirus/genética , Vesiculovirus/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células HEK293 , Proteínas Virales/metabolismo , Proteínas Virales/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral
7.
PLoS Genet ; 18(6): e1010288, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35767574

RESUMEN

Although evolutionary fates and expression patterns of duplicated genes have been extensively investigated, how duplicated genes co-regulate a biological process in polyploids remains largely unknown. Here, we identified two gsdf (gonadal somatic cell-derived factor) homeologous genes (gsdf-A and gsdf-B) in hexaploid gibel carp (Carassius gibelio), wherein each homeolog contained three highly conserved alleles. Interestingly, gsdf-A and gsdf-B transcription were mainly activated by dmrt1-A (dsx- and mab-3-related transcription factor 1) and dmrt1-B, respectively. Loss of either gsdf-A or gsdf-B alone resulted in partial male-to-female sex reversal and loss of both caused complete sex reversal, which could be rescued by a nonsteroidal aromatase inhibitor. Compensatory expression of gsdf-A and gsdf-B was observed in gsdf-B and gsdf-A mutants, respectively. Subsequently, we determined that in tissue culture cells, Gsdf-A and Gsdf-B both interacted with Ncoa5 (nuclear receptor coactivator 5) and blocked Ncoa5 interaction with Rora (retinoic acid-related orphan receptor-alpha) to repress Rora/Ncoa5-induced activation of cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a). These findings illustrate that Gsdf-A and Gsdf-B can regulate male differentiation by inhibiting cyp19a1a transcription in hexaploid gibel carp and also reveal that Gsdf-A and Gsdf-B can interact with Ncoa5 to suppress cyp19a1a transcription in vitro. This study provides a typical case of cooperative mechanism of duplicated genes in polyploids and also sheds light on the conserved evolution of sex differentiation.


Asunto(s)
Gónadas , Diferenciación Sexual , Animales , Diferenciación Celular/genética , Femenino , Proteínas de Peces/genética , Peces/genética , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Masculino , Poliploidía , Diferenciación Sexual/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
BMC Plant Biol ; 24(1): 874, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304829

RESUMEN

BACKGROUND: Global warming has greatly increased the impact of high temperatures on crops, resulting in reduced yields and increased mortality. This phenomenon is of significant importance to the rose flower industry because high-temperature stress leads to bud dormancy or even death, reducing ornamental value and incurring economic losses. Understanding the molecular mechanisms underlying the response and resistance of roses to high-temperature stress can serve as an important reference for cultivating high-temperature-stress-resistant roses. RESULTS: To evaluate the impact of high temperatures on rose plants, we measured physiological indices in rose leaves following heat stress. Protein and chlorophyll contents were significantly decreased, whereas proline and malondialdehyde (MDA) contents, and peroxidase (POD) activity were increased. Subsequently, transcriptomics and metabolomics analyses identified 4,652 common differentially expressed genes (DEGs) and 57 common differentially abundant metabolites (DAMs) in rose plants from four groups. Enrichment analysis showed that DEGs and DAMs were primarily involved in the mitogen-activated protein kinases (MAPK) signaling pathway, plant hormone signal transduction, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. The combined analysis of the DEGs and DAMs revealed that flavonoid biosynthesis pathway-related genes, such as chalcone isomerase (CHI), shikimate O-hydroxycinnamoyl transferase (HCT), flavonol synthase (FLS), and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), were downregulated after heat stress. Moreover, in the MAPK signaling pathway, the expression of genes related to jasmonic acid exhibited a decrease, but ethylene receptor (ETR/ERS), P-type Cu + transporter (RAN1), ethylene-insensitive protein 2/3 (EIN2), ethylene-responsive transcription factor 1 (ERF1), and basic endochitinase B (ChiB), which are associated with the ethylene pathway, were mostly upregulated. Furthermore, heterologous overexpression of the heat stress-responsive gene RcHSP70 increased resistance to heat stress in Arabidopsis thaliana. CONCLUSION: The results of this study indicated that the flavonoid biosynthesis pathway, MAPK signaling pathway, and plant hormones may be involved in high-temperature resistance in roses. Constitutive expression of RcHSP70 may contribute to increasing high-temperature tolerance. This study provides new insights into the genes and metabolites induced in roses in response to high temperature, and the results provide a reference for analyzing the molecular mechanisms underlying resistance to heat stress in roses.


Asunto(s)
Respuesta al Choque Térmico , Metabolómica , Rosa , Rosa/genética , Rosa/metabolismo , Rosa/fisiología , Respuesta al Choque Térmico/genética , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología
9.
Metab Eng ; 81: 238-248, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160746

RESUMEN

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Asunto(s)
Corynebacterium glutamicum , Fermentación , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutámico , Ácido Poliglutámico/genética , Ligasas/metabolismo , Glucosa/metabolismo
10.
Opt Lett ; 49(16): 4733-4736, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146147

RESUMEN

Random lasers (RLs), with their low spatial coherence, are ideal illumination sources for speckle-free imaging. However, it is still challenging for RLs to maintain low spatial coherence with the need for integration and directionality. Here, a disordered multimode random polymer fiber laser (RPFL) is proposed and implemented as a low-spatial-coherence light source. Compared to typical multimode optical fibers, the number of accommodated modes is increased by about 11×, the speckle contrast is reduced to 0.013, and the spatial coherence factor is reduced to 0.08. The low-spatial-coherence property enables RPFL to produce significantly superior imaging quality in both speckle-free imaging and non-invasive imaging through opacity. This study provides a strategy for an integrated speckle-free imaging system and paves the way for non-invasive imaging.

11.
Bioorg Med Chem Lett ; 97: 129558, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956762

RESUMEN

The enhancer of zeste homolog 2 (EZH2) plays the role of the main catalytic subunit of polycomb repressive complex 2 (PRC2) that catalyzes the methylation of histone H3 lysine 27 (H3K27). Overexpression or mutation of EZH2 has been observed in many types of hematologic malignancies and solid tumors, such as myeloma, lymphoma, prostate, breast, kidney, and lung cancers. EZH2 has been demonstrated as a promising therapeutic target for the treatment of tumors. Based on the structure of 1 (EPZ-6438), a series of novel conformationally constrained derivatives were designed and synthesized aiming to improve the EZH2 inhibition activity, especially for mutated EZH2. Structure and activity relationship (SAR) exploration and optimization at both enzymatic and cellular levels led to the discovery of 28. In vitro, 28 displayed potent EZH2 inhibition activity with an IC50 value of 0.95 nM, which is comparable to EPZ-6438 (1). 28 exhibited high anti-proliferation activity against different lymphoma cell lines including WSU-DLCL2, Pfeiffer and Karpas-422 (IC50 = 2.36, 1.73, and 1.82 nM, respectively). In vivo, 28 showed acceptable pharmacokinetic characteristics (oral bioavailability F = 36.9%) and better efficacy than 1 in both Pfeiffer and Karpas-422 xenograft mouse models, suggesting that it can be further developed as a potential therapeutic candidate for EZH2-associated cancers.


Asunto(s)
Neoplasias , Animales , Humanos , Masculino , Ratones , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Linfoma/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/metabolismo
12.
J Immunol ; 208(9): 2098-2108, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35387839

RESUMEN

Several studies have shown an enhanced metabolism in the CD4+ T cells of lupus patients and lupus-prone mice. Little is known about the metabolism of B cells in lupus. In this study, we compared the metabolism of B cells between lupus-prone B6.Sle1.Sle2.Sle3 triple-congenic mice and C57BL/6 controls at steady state relative to autoantibody production, as well as during T cell-dependent (TD) and T cell-independent (TI) immunizations. Starting before the onset of autoimmunity, B cells from triple-congenic mice showed an elevated glycolysis and mitochondrial respiration, which were normalized in vivo by inhibiting glycolysis with a 2-deoxy-d-glucose (2DG) treatment. 2DG greatly reduced the production of TI-Ag-specific Abs, but showed minimal effect with TD-Ags. In contrast, the inhibition of glutaminolysis with 6-diazo-5-oxo-l-norleucine had a greater effect on TD than TI-Ag-specific Abs in both strains. Analysis of the TI and TD responses in purified B cells in vitro suggests, however, that the glutaminolysis requirement is not B cell-intrinsic. Thus, B cells have a greater requirement for glycolysis in TI than TD responses, as inferred from pharmacological interventions. B cells from lupus-prone and control mice have different intrinsic metabolic requirements or different responses toward 2DG and 6-diazo-5-oxo-l-norleucine, which mirrors our previous results obtained with follicular Th cells. Overall, these results predict that targeting glucose metabolism may provide an effective therapeutic approach for systemic autoimmunity by eliminating both autoreactive follicular Th and B cells, although it may also impair TI responses.


Asunto(s)
Linfocitos B , Diazooxonorleucina , Animales , Glucólisis , Humanos , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores
13.
BMC Ophthalmol ; 24(1): 432, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367398

RESUMEN

BACKGROUND: Congenital optic disc pit (ODP) is a relatively uncommon congenital anomaly of the optic disc, which seriously affects the patient's vision when combined with optic disc pit maculopathy(ODP-M). Currently, the treatment of ODP-M remains a clinical challenge and a focus of research. CASE PRESENTATION: A boy had a pit in the inferotemporal segment of the optic disc with ODP-M. Optical Coherence Tomography(OCT) showed ODP and serous retinal detachment. He was treated with pars plana vitrectomy(PPV), followed by Corneal Stromal Lenticule (CSL) sealing and C3F8 tamponade. In the end, significant anatomical improvement was achieved, and the Best Corrected Visual Acuity(BCVA) was improved. CONCLUSIONS: The CSL transplantation may be a viable therapeutic option for improving ODP-M with stable anatomical and functional result. However, more cases and longer follow-up are needed to confirm the safety and effectiveness of the technology.


Asunto(s)
Sustancia Propia , Disco Óptico , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Masculino , Disco Óptico/anomalías , Sustancia Propia/cirugía , Sustancia Propia/trasplante , Anomalías del Ojo/cirugía , Desprendimiento de Retina/cirugía , Desprendimiento de Retina/diagnóstico , Vitrectomía/métodos , Enfermedades de la Retina/cirugía , Enfermedades de la Retina/congénito , Enfermedades de la Retina/diagnóstico
14.
BMC Ophthalmol ; 24(1): 107, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448947

RESUMEN

PURPOSE: To evaluate the association of body stature with ocular biometrics and refraction in preschool children. METHODS: A cross-sectional, school-based study was conducted in Shenzhen, China. Preschool children aged 3 to 6 from 10 randomly-selected kindergartens were recruited. Ocular biometric parameters, including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD), corneal radius curvature (CR), axial length to corneal radius ratio (AL-to-CR ratio) and lens thickness (LT) were measured using non-contact partial-coherence laser interferometry. Cycloplegic refractions were obtained by a desktop autorefractor. Body height and weight were measured using standard procedures. The association between body stature and ocular biometrics were analyzed with univariable and multivariable regression model. RESULTS: A total of 373 preschoolers were included. AL, ACD, VCD, CR, and AL-to-CR ratio, were positively associated with height and weight (p < 0.05), whereas LT was negatively associated with height and weight (p < 0.01). No association was observed between stature and central cornea thickness and refraction. After adjusted for age and gender in a multivariable regression model, AL had positive associations with height (p < 0.01) and weight (p < 0.01). However, refraction had no significant association with stature parameters. CONCLUSION: Taller and heavier preschoolers had eyes with longer AL, deeper vitreous chamber, and flatter cornea. The significant associations between body stature and ocular biometric parameters reveal the driving influence of body development on the growth of eyeballs in preschoolers.


Asunto(s)
Segmento Anterior del Ojo , Estatura , Preescolar , Humanos , Estudios Transversales , Biometría , China/epidemiología
15.
Nucleic Acids Res ; 50(12): 6953-6967, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35748856

RESUMEN

G-quadruplex structure (G4) is a type of DNA secondary structure that widely exists in the genomes of many organisms. G4s are believed to participate in multiple biological processes. Acyl-CoA binding protein (ACBP), a ubiquitously expressed and highly conserved protein in eukaryotic cells, plays important roles in lipid metabolism by transporting and protecting acyl-CoA esters. Here, we report the functional identification of a G4 in the promoter of the ACBP gene in silkworm and human cancer cells. We found that G4 exists as a conserved element in the promoters of ACBP genes in invertebrates and vertebrates. The BmACBP G4 bound with G4-binding protein LARK regulated BmACBP transcription, which was blocked by the G4 stabilizer pyridostatin (PDS) and G4 antisense oligonucleotides. PDS treatment with fifth instar silkworm larvae decreased the BmACBP expression and triacylglycerides (TAG) level, resulting in reductions in fat body mass, body size and weight and growth and metamorphic rates. PDS treatment and knocking out of the HsACBP G4 in human hepatic adenocarcinoma HepG2 cells inhibited the expression of HsACBP and decreased the TAG level and cell proliferation. Altogether, our findings suggest that G4 of the ACBP genes is involved in regulation of lipid metabolism processes in invertebrates and vertebrates.


Asunto(s)
Inhibidor de la Unión a Diazepam , Metabolismo de los Lípidos , Humanos , Inhibidor de la Unión a Diazepam/genética , Metabolismo de los Lípidos/genética , ADN/genética , Coenzima A
16.
J Clin Lab Anal ; 38(4): e25012, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38305509

RESUMEN

BACKGROUND: RACK1 has been identified as a multifunctional cytosolic protein, and plays a pivotal role in multiple biological responses involved in several kinds of tumors, while its effect in cervical cancer has not been well elucidated yet. The study aimed to investigate the role of RACK1 in cervical cancer occurrence and progression. METHODS: The expression of RACK1 in cervical specimens was measured by immunohistochemical staining and Western blot assay. Transgenic mice were used to detect the role of RACK1 in modulating tumorigenesis in vivo. Cervical carcinoma cell lines were used to explore the underlying mechanisms of RACK1 on the behaviors of tumor cells in vitro. RESULTS: We found that RACK1 expression was upregulated in cancer tissues compared with adjacent tissues, and its expression was gradually increased from cervictis, and cervical intraepithelial neoplasis (CIN) to carcinoma. Genetic overexpression of RACK1 facilitated tumor formation and growth in nude mice. Mechanism studies disclosed that RACK1 over-expression prolonged the G0 /G1 phase by up-regulating the expression of cyclinD1, down-regulating p21 and p27 probably by modulating the phosphorylation of AKT. CONCLUSIONS: Taken together, we concluded that RACK1 stimulates tumorigenesis and progression of cervical cancer via modulating the proliferation of tumor cells, implying that targeting RACK1 may serve as a promising method for cervical cancer therapy.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Ratones , Femenino , Animales , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular/genética , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/farmacología
17.
Ophthalmologica ; 247(1): 8-18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38113861

RESUMEN

INTRODUCTION: Rhegmatogenous retinal detachment (RRD) is one of the most common fundus diseases. Many rural areas of China have few ophthalmologists, and ophthalmologic ultrasound examination is of great significance for remote diagnosis of RRD. Therefore, this study aimed to develop and evaluate a deep learning (DL) model, to be used for automated RRD diagnosis based on ophthalmologic ultrasound images, in order to support timely diagnosis of RRD in rural and remote areas. METHODS: A total of 6,000 ophthalmologic ultrasound images from 1,645 participants were used to train and verify the DL model. A total of 5,000 images were used for training and validating DL models, and an independent testing set of 1,000 images was used to test the performance of eight DL models trained using four different DL model architectures (fully connected neural network, LeNet5, AlexNet, and VGG16) and two preprocessing techniques (original, original image augmented). Receiver operating characteristic (ROC) curves were used to analyze their performance. Heatmaps were generated to visualize the process of the best DL model in the identification of RRD. Finally, five ophthalmologists were invited to diagnose RRD independently on the same test set of 1,000 images for performance comparison with the best DL model. RESULTS: The best DL model for identifying RRD achieved an area under the ROC curve (AUC) of 0.998 with a sensitivity and specificity of 99.2% and 99.8%, respectively. The best preprocessing method in each model architecture was the application of original image augmentation (average AUC = 0.982). The best model architecture in each preprocessing method was VGG16 (average AUC = 0.998). CONCLUSION: The best DL model determined in this study has higher accuracy, sensitivity, and specificity than the ophthalmologists' diagnosis in identifying RRD based on ophthalmologic ultrasound images. This model may provide support for timely diagnosis in locations without access to ophthalmologic care.


Asunto(s)
Aprendizaje Profundo , Desprendimiento de Retina , Humanos , Desprendimiento de Retina/diagnóstico , Redes Neurales de la Computación , Fondo de Ojo , Curva ROC
18.
BMC Musculoskelet Disord ; 25(1): 760, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354413

RESUMEN

BACKGROUND: This study aims to investigate the morphological characteristics of the distal humerus in healthy adults from northern China using computed tomography and three-dimensional reconstruction techniques and compared whether there were diferences in morphology among populations from diferent geographical regions. METHODS: The CT data of 80 patients were imported into Mimics software for three-dimensional reconstruction and measurement. The differences in distal humeral morphological parameters between different genders and sides were compared, and the correlation between the parameters was explored. The distal humeral morphological parameters between Western and Chinese populations based on current and previous pooled results were compared. RESULTS: Thirty-one morphological parameters were measured and analyzed in this study. The average (and standard deviation) of capitellum depth, capitellum width, capitellum height, distal humerus width, epitrochlea width, and humeral metaphyseal width was 10.83 ± 1.18 mm, 17.60 ± 2.06 mm, 21.10 ± 2.03 mm, 44.38 ± 4.07 mm, 12.02 ± 1.90 mm and 58.95 ± 4.86 mm, these parameters were significantly higher (P < 0.001*) in males than females. The capitellum width (r = -0.300, P = 0.007*), anterior lateral trochlear depth (r =-0.227, P = 0.043*), medial crest coronal tangential angle (r = 0.307, P = 0.006*), olecranon fossa volume (r = -0.408, P < 0.001*), olecranon fossa surface area (r = -0.345, P = 0.002*) and coronoid fossa surface area (r = -0.279, P = 0.012*) were significantly correlated with the age of the subjects. In the comparison of people from different regions, the capitellum height, lateral trochlear high, trochlear groove high, trochlear depth and medial trochlear high of the Western population were 23.25 ± 2.56 m, 21.6 ± 2.20 mm, 17.8 ± 2.00 mm, 17.80 ± 2.00 mm, 29.9 ± 4.10 mm, are significantly higher than those in the Chinese population. while capitellum width (15.55 ± 2.68 mm) and capitellum depth (9.00 ± 1.00 mm) were slightly lower. CONCLUSION: The findings provide a basis for the design of distal humeral orthopaedic implants, ensuring greater alignment with the anatomical structure of the distal humerus and improved surgical outcomes. Furthermore, the study provides a reference point for the diagnosis and classification of distal humeral diseases, as well as guidance for patient rehabilitation.


Asunto(s)
Húmero , Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Húmero/diagnóstico por imagen , Húmero/anatomía & histología , Adulto , China , Persona de Mediana Edad , Imagenología Tridimensional/métodos , Adulto Joven , Anciano , Voluntarios Sanos
19.
PLoS Genet ; 17(7): e1009715, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329293

RESUMEN

Histone methylation is dynamically regulated to shape the epigenome and adjust central nuclear processes including transcription, cell cycle control and DNA repair. Lysine-specific histone demethylase 2 (LSD2) has been implicated in multiple types of human cancers. However, its functions remain poorly understood. This study investigated the histone demethylase LSD2 homolog AMX-1 in C. elegans and uncovered a potential link between H3K4me2 modulation and DNA interstrand crosslink (ICL) repair. AMX-1 is a histone demethylase and mainly localizes to embryonic cells, the mitotic gut and sheath cells. Lack of AMX-1 expression resulted in embryonic lethality, a decreased brood size and disorganized premeiotic tip germline nuclei. Expression of AMX-1 and of the histone H3K4 demethylase SPR-5 is reciprocally up-regulated upon lack of each other and the mutants show increased H3K4me2 levels in the germline, indicating that AMX-1 and SPR-5 regulate H3K4me2 demethylation. Loss of AMX-1 function activates the CHK-1 kinase acting downstream of ATR and leads to the accumulation of RAD-51 foci and increased DNA damage-dependent apoptosis in the germline. AMX-1 is required for the proper expression of mismatch repair component MutL/MLH-1 and sensitivity against ICLs. Interestingly, formation of ICLs lead to ubiquitination-dependent subcellular relocalization of AMX-1. Taken together, our data suggest that AMX-1 functions in ICL repair in the germline.


Asunto(s)
Reparación del ADN/genética , Histona Demetilasas/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans , Núcleo Celular/metabolismo , Daño del ADN/genética , Reparación del ADN/fisiología , Células Germinativas/metabolismo , Histona Demetilasas/fisiología , Histonas/genética , Metilación , Procesamiento Proteico-Postraduccional/genética , Ubiquitinación
20.
PLoS Genet ; 17(9): e1009760, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34491994

RESUMEN

Unisexual taxa are commonly considered short-lived as the absence of meiotic recombination is supposed to accumulate deleterious mutations and hinder the creation of genetic diversity. However, the gynogenetic gibel carp (Carassius gibelio) with high genetic diversity and wide ecological distribution has outlived its predicted extinction time of a strict unisexual reproduction population. Unlike other unisexual vertebrates, males associated with supernumerary microchromosomes have been observed in gibel carp, which provides a unique system to explore the rationales underlying male occurrence in unisexual lineage and evolution of unisexual reproduction. Here, we identified a massively expanded satellite DNA cluster on microchromosomes of hexaploid gibel carp via comparing with the ancestral tetraploid crucian carp (Carassius auratus). Based on the satellite cluster, we developed a method for single chromosomal fluorescence microdissection and isolated three male-specific microchromosomes in a male metaphase cell. Genomic anatomy revealed that these male-specific microchromosomes contained homologous sequences of autosomes and abundant repetitive elements. Significantly, several potential male-specific genes with transcriptional activity were identified, among which four and five genes displayed male-specific and male-biased expression in gonads, respectively, during the developmental period of sex determination. Therefore, the male-specific microchromosomes resembling common features of sex chromosomes may be the main driving force for male occurrence in gynogenetic gibel carp, which sheds new light on the evolution of unisexual reproduction.


Asunto(s)
Carpas/genética , Cromosomas , Genoma , Animales , Gónadas/metabolismo , Masculino , Reproducción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA