Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557119

RESUMEN

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Asunto(s)
COVID-19 , Endosomas , Lisosomas , Tetraspanina 24 , Animales , Lisosomas/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Ratones , COVID-19/metabolismo , COVID-19/inmunología , COVID-19/patología , Endosomas/metabolismo , Ratones Noqueados , Vasculitis/metabolismo , Ratones Endogámicos C57BL , SARS-CoV-2 , Inflamación/metabolismo , Inflamación/patología , Sepsis/metabolismo
2.
Cell Mol Life Sci ; 80(6): 154, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204469

RESUMEN

Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.


Asunto(s)
Mucosa Intestinal , Receptores de Interferón , Tetraspaninas , Animales , Ratones , Clatrina/metabolismo , Endocitosis/fisiología , Inflamación/metabolismo , Interferones/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Interferón/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
3.
Cell Mol Life Sci ; 79(7): 389, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773608

RESUMEN

EWI2 is a transmembrane immunoglobulin superfamily (IgSF) protein that physically associates with tetraspanins and integrins. It inhibits cancer cells by influencing the interactions among membrane molecules including the tetraspanins and integrins. The present study revealed that, upon EWI2 silencing or ablation, the elevated movement and proliferation of cancer cells in vitro and increased cancer metastatic potential and malignancy in vivo are associated with (i) increases in clustering, endocytosis, and then activation of EGFR and (ii) enhancement of Erk MAP kinase signaling. These changes in signaling make cancer cells (i) undergo partial epithelial-to-mesenchymal (EMT) for more tumor progression and (ii) proliferate faster for better tumor formation. Inhibition of EGFR or Erk kinase can abrogate the cancer cell phenotypes resulting from EWI2 removal. Thus, to inhibit cancer cells, EWI2 prevents EGFR from clustering and endocytosis to restrain its activation and signaling.


Asunto(s)
Antígenos CD , Endocitosis , Receptores ErbB , Proteínas de la Membrana , Neoplasias , Antígenos CD/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Integrinas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
4.
Stem Cells ; 37(9): 1189-1199, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31116894

RESUMEN

Fertility and endocrine function rely on a tightly regulated synchronicity within the hypothalamic-pituitary-gonadal axis, for which the sex gonad serves as the primary source of sex steroid hormones and germ cells. To maintain hormonal stasis and fertility throughout the lifespan, inducing gonadal stem cell renewal is an attractive strategy. The follicle-stimulating hormone/cAMP/MAPK/Sox9 signaling axis and its regulated specific miRNAs are thought to regulate vertebrate gonadal development and sex differentiation, yet the regulatory networks are largely unknown. By genome-wide transcriptome mining and gonadal microinjections, we identify two G protein-coupled receptor (GPCR)-regulatory circuits: miR430a-Sox9a in the testis and miR218a-Sox9b in the ovary. Coinjection of a Sox9a-miR430a mixture promotes spermatogenesis, whereas Sox9b-miR218a mixture increases primordial ovarian follicles. Coimmunoprecipitation and mass spectrometry indicate that the two mixtures differentially modulate Sox9a/Sox9b multiple covalent modifications. We further reveal that miR430a and Sox9a synergistically activate testicular protein kinase C (PKC)/Akt signaling, whereas the miR218a and Sox9b mixture constrains ovary PKC/Akt signaling. pMIR-GFP reporter assay demonstrate that miR430a and miR218a target the 3' untranslated region (UTR) of four GPCR targets (lgr4, grk5l, grk4, and grp157). Knockdown of these GPCR genes or two Sox9 genes alters miR430a and miR218a regulation in the above gonad-specific PKC and Akt signaling pathways. These results establish two specific miRNA-GPCR-Sox9 networks and provide mechanistic insight into gonadal differentiation and rejuvenation. Stem Cells 2019;37:1189-1199.


Asunto(s)
MicroARNs/genética , Ovario/metabolismo , Receptores Acoplados a Proteínas G/genética , Factor de Transcripción SOX9/genética , Testículo/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Masculino , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Ovario/crecimiento & desarrollo , Receptores Acoplados a Proteínas G/metabolismo , Rejuvenecimiento , Factor de Transcripción SOX9/metabolismo , Espermatogénesis/genética , Testículo/crecimiento & desarrollo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Cell Mol Life Sci ; 75(21): 4077, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30196315

RESUMEN

In the original publication, abstract text, one of the co-author's name and the legend to Table 1 were incorrectly published.

6.
Cell Mol Life Sci ; 75(18): 3423-3439, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29589089

RESUMEN

Tetraspanins co-emerged with multi-cellular organisms during evolution and are typically localized at the cell­cell interface, [corrected] and form tetraspanin-enriched microdomains (TEMs) by associating with each other and other membrane molecules. Tetraspanins affect various biological functions, but how tetraspanins engage in multi-faceted functions at the cellular level is largely unknown. When cells interact, the membrane microextrusions at the cell-cell interfaces form dynamic, digit-like structures between cells, which we term digitation junctions (DJs). We found that (1) tetraspanins CD9, CD81, and CD82 and (2) TEM-associated molecules integrin α3ß1, CD44, EWI2/PGRL, and PI-4P are present in DJs of epithelial, endothelial, and cancer cells. Tetraspanins and their associated molecules also regulate the formation and development of DJs. Moreover, (1) actin cytoskeleton, RhoA, and actomyosin activities and (2) growth factor receptor-Src-MAP kinase signaling, but not PI-3 kinase, regulate DJs. Finally, we showed that DJs consist of various forms in different cells. Thus, DJs are common, interactive structures between cells, and likely affect cell adhesion, migration, and communication. TEMs probably modulate various cell functions through DJs. Our findings highlight that DJ morphogenesis reflects the transition between cell-matrix adhesion and cell-cell adhesion and involves both cell-cell and cell-matrix adhesion molecules.


Asunto(s)
Uniones Intercelulares/metabolismo , Tetraspaninas/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Actinas/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Citocalasina D/farmacología , Perros , Humanos , Células de Riñón Canino Madin Darby , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Tetraspaninas/química
7.
Biochim Biophys Acta ; 1850(6): 1261-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25727396

RESUMEN

BACKGROUND: Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. SCOPE OF REVIEW: Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. MAJOR CONCLUSIONS: Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. GENERAL SIGNIFICANCE: These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.


Asunto(s)
Linaje de la Célula , Mecanotransducción Celular , Células Madre Mesenquimatosas/fisiología , Nicho de Células Madre , Animales , Forma de la Célula , Citoesqueleto/fisiología , Matriz Extracelular/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Estimulación Física , Presión , Estrés Mecánico
8.
Cancer Metastasis Rev ; 34(4): 619-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26335499

RESUMEN

Tetraspanin CD82 suppresses the progression and metastasis of a wide range of solid malignant tumors. However, its roles in tumorigenesis and hematopoietic malignancy remain unclear. Ubiquitously expressed CD82 restrains cell migration and cell invasion by modulating both cell-matrix and cell-cell adhesiveness and confining outside-in pro-motility signaling. This restraint at least contributes to, if not determines, the metastasis-suppressive activity and, also likely, the physiological functions of CD82. As a modulator of cell membrane heterogeneity, CD82 alters microdomains, trafficking, and topography of the membrane by changing the membrane molecular landscape. The functional activities of membrane molecules and the cytoskeletal interaction of the cell membrane are subsequently altered, followed by changes in cellular functions. Given its pathological and physiological importance, CD82 is a promising candidate for clinically predicting and blocking tumor progression and metastasis and also an emerging model protein for mechanistically understanding cell membrane organization and heterogeneity.


Asunto(s)
Adhesión Celular/genética , Genes Supresores de Tumor , Proteína Kangai-1/genética , Microdominios de Membrana/metabolismo , Invasividad Neoplásica/genética , Neoplasias/patología , Movimiento Celular/genética , Uniones Célula-Matriz/genética , Citoesqueleto , Humanos , Proteína Kangai-1/biosíntesis , Transducción de Señal/genética
9.
Stem Cells ; 33(3): 806-18, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25420467

RESUMEN

There has been growing interest in applying tissue engineering to stem cell-based regeneration therapies. We have previously reported that zebrafish can faithfully regenerate complicated tissue structures through blastemal cell type conversions and tissue reorganization. To unveil the regenerative factors and engineering arts of blastemal regeneration, we conducted transcriptomal analyses at four time points corresponding to preamputation, re-epitheliation, blastemal formation, and respecification. By combining the hierarchical gene ontology term network, the DAVID annotation system, and Euclidean distance clustering, we identified four signaling pathways: foxi1-foxo1b-pou3f1, pax3a-mant3a-col11/col2, pou5f1-cdx4-kdrl, and isl1-wnt11 PCP-sox9a. Results from immunohistochemical staining and promoter-driven transgenic fish suggest that these pathways, respectively, define wound epidermis reconstitution, cell type conversions, blastemal angiogenesis/vasculogenesis, and cartilage matrix-orientation. Foxi1 morpholino-knockdown caused expansions of Foxo1b- and Pax3a-expression in the basal layer-blastemal junction region. Moreover, foxi1 morphants displayed increased sox9a and hoxa2b transcripts in the embryonic pharyngeal arches. Thus, a Foxi1 signal switch is required to establish correct tissue patterns, including re-epitheliation and blastema formation. This study provides novel insight into a blastema regeneration strategy devised by epithelial cell transdifferentiation, blood vessel engineering, and cartilage matrix deposition.


Asunto(s)
Regeneración Ósea/fisiología , Maxilares/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Transdiferenciación Celular/genética , Regeneración Tisular Dirigida , Maxilares/citología , Transducción de Señal/genética , Transcriptoma , Pez Cebra
10.
Circulation ; 130(17): 1493-504, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25149363

RESUMEN

BACKGROUND: Angiogenesis is crucial for many pathological processes and becomes a therapeutic strategy against diseases ranging from inflammation to cancer. The regulatory mechanism of angiogenesis remains unclear. Although tetraspanin CD82 is widely expressed in various endothelial cells (ECs), its vascular function is unknown. METHODS AND RESULTS: Angiogenesis was examined in Cd82-null mice with in vivo and ex vivo morphogenesis assays. Cellular functions, molecular interactions, and signaling were analyzed in Cd82-null ECs. Angiogenic responses to various stimuli became markedly increased upon Cd82 ablation. Major changes in Cd82-null ECs were enhanced migration and invasion, likely resulting from the upregulated expression of cell adhesion molecules such as CD44 and integrins at the cell surface and subsequently elevated outside-in signaling. Gangliosides, lipid raft clustering, and CD44-membrane microdomain interactions were increased in the plasma membrane of Cd82-null ECs, leading to less clathrin-independent endocytosis and then more surface presence of CD44. CONCLUSIONS: Our study reveals that CD82 restrains pathological angiogenesis by inhibiting EC movement, that lipid raft clustering and cell adhesion molecule trafficking modulate angiogenic potential, that transmembrane protein modulates lipid rafts, and that the perturbation of CD82-ganglioside-CD44 signaling attenuates pathological angiogenesis.


Asunto(s)
Células Endoteliales/metabolismo , Receptores de Hialuranos/metabolismo , Proteína Kangai-1/metabolismo , Microdominios de Membrana/metabolismo , Neovascularización Patológica/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Endocitosis/fisiología , Células Endoteliales/patología , Gangliósidos/metabolismo , Proteína Kangai-1/genética , Microdominios de Membrana/patología , Ratones Noqueados , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología
11.
J Virol ; 87(6): 3435-46, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23302890

RESUMEN

Human papillomavirus type 16 (HPV16) is the primary etiologic agent for cervical cancer. The infectious entry of HPV16 into cells occurs via a so-far poorly characterized clathrin- and caveolin-independent endocytic pathway, which involves tetraspanin proteins and actin. In this study, we investigated the specific role of the tetraspanin CD151 in the early steps of HPV16 infection. We show that surface-bound HPV16 moves together with CD151 within the plane of the membrane before they cointernalize into endosomes. Depletion of endogenous CD151 did not affect binding of viral particles to cells but resulted in reduction of HPV16 endocytosis. HPV16 uptake is dependent on the C-terminal cytoplasmic region of CD151 but does not require its tyrosine-based sorting motif. Reexpression of the wild-type CD151 but not mutants affecting integrin functions restored virus internalization in CD151-depleted cells. Accordingly, short interfering RNA (siRNA) gene knockdown experiments confirmed that CD151-associated integrins (i.e., α3ß1 and α6ß1/4) are involved in HPV16 infection. Furthermore, palmitoylation-deficient CD151 did not support HPV16 cell entry. These data show that complex formation of CD151 with laminin-binding integrins and integration of the complex into tetraspanin-enriched microdomains are critical for HPV16 endocytosis.


Asunto(s)
Endocitosis , Papillomavirus Humano 16/fisiología , Tetraspanina 24/metabolismo , Internalización del Virus , Línea Celular , Análisis Mutacional de ADN , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Tetraspanina 24/genética
12.
Geroscience ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639833

RESUMEN

Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.

13.
Blood ; 118(15): 4274-84, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-21832275

RESUMEN

Tetraspanin CD151 is highly expressed in endothelial cells and regulates pathologic angiogenesis. However, the mechanism by which CD151 promotes vascular morphogenesis and whether CD151 engages other vascular functions are unclear. Here we report that CD151 is required for maintaining endothelial capillary-like structures formed in vitro and the integrity of endothelial cell-cell and cell-matrix contacts in vivo. In addition, vascular permeability is markedly enhanced in the absence of CD151. As a global regulator of endothelial cell-cell and cell-matrix adhesions, CD151 is needed for the optimal functions of various cell adhesion proteins. The loss of CD151 elevates actin cytoskeletal traction by up-regulating RhoA signaling and diminishes actin cortical meshwork by down-regulating Rac1 activity. The inhibition of RhoA or activation of cAMP signaling stabilizes CD151-silenced or -null endothelial structure in vascular morphogenesis. Together, our data demonstrate that CD151 maintains vascular stability by promoting endothelial cell adhesions, especially cell-cell adhesion, and confining cytoskeletal tension.


Asunto(s)
Comunicación Celular/fisiología , Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Tetraspanina 24/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Adhesión Celular/fisiología , Células Cultivadas , Citoesqueleto/genética , Células Endoteliales/citología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Ratones , Ratones Mutantes , Neuropéptidos/genética , Neuropéptidos/metabolismo , Tetraspanina 24/genética , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
14.
Cell Mol Life Sci ; 69(17): 2843-52, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22450717

RESUMEN

Tetraspanins regulate a variety of cellular functions. However, the general cellular mechanisms by which tetraspanins regulate these functions remain poorly understood. In this article we collected the observations that tetraspanins regulate the formation and/or development of various tubular structures of cell membrane. Because tetraspanins and their associated proteins (1) are localized at the tubular structures, such as the microvilli, adhesion zipper, foot processes, and penetration peg, and/or (2) regulate the morphogenesis of these membrane tubular structures, tetraspanins probably modulate various cellular functions through these membrane tubular structures. Some tetraspanins inhibit membrane tubule formation and/or extension, while others promote them. We predict that tetraspanins regulate the formation and/or development of various membrane tubular structures: (1) microvilli or nanovilli at the plasma membranes free of cell and matrix contacts, (2) membrane tubules at the plasma membrane of cell-matrix and cell-cell interfaces, and (3) membrane tubules at the intracellular membrane compartments. These different membrane tubular structures likely share a common morphogenetic mechanism that involves tetraspanins. Tetraspanins probably regulate the morphogenesis of membrane tubular structures by altering (1) the biophysical properties of the cell membrane such as curvature and/or (2) the membrane connections of cytoskeleton. Since membrane tubular structures are associated with cell functions such as adhesion, migration, and intercellular communication, in all of which tetraspanins are involved, the differential effects of tetraspanins on membrane tubular structures likely lead to the functional difference of tetraspanins.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Tetraspaninas/metabolismo , Animales , Humanos
15.
Mol Med Rep ; 28(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37594051

RESUMEN

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that, in Fig. 4A on p. 839, the 'CD151/24 h' and 'CD151­ARSA/48 h' panels appeared to contain overlapping sections of data, such that they were potentially derived from the same original source, where these panels were intended to show the results from differently performed experiments. The authors have re­examined their original data, and realize that the 'CD151­ARSA/48 h' panel was inadvertently placed incorrectly in the figure. The revised version of Fig. 4, now containing the correct data for the 'CD151­ARSA/48 h' experiment in Fig. 4A, is shown below. Note that this error did not adversely affect either the results or the overall conclusions reported in this study. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of Molecular Medicine Reports for allowing them the opportunity to publish this. They also wish to apologize to the readership of the Journal for any inconvenience caused. [Molecular Medicine Reports 7: 836­842, 2013; DOI: 10.3892/mmr.2012.1250].

16.
Oncogene ; 42(12): 861-868, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36788350

RESUMEN

Experimental studies on immunoglobulin superfamily (IgSF) member EWI2 reveal that it suppresses a variety of solid malignant tumors including brain, lung, skin, and prostate cancers in animal models and inhibits tumor cell movement and growth in vitro. While EWI2 appears to support myeloid leukemia in mouse models and maintain leukemia stem cells. Bioinformatics analyses suggest that EWI2 gene expression is downregulated in glioblastoma but upregulated in melanoma, pancreatic cancer, and liver cancer. The mechanism of action for EWI2 is linked to its inhibition of growth factor receptors and cell adhesion proteins through its associated tetraspanin-enriched membrane domains (TEMDs), by altering the cell surface clustering and endolysosome trafficking/turnover of these transmembrane proteins. Recent studies also show that EWI2 modulates the nuclear translocation of ERK and TFEB to change the activities of these gene expression regulators. For EWI2 relatives including FPRP, IgSF3, and CD101, although their roles in malignant diseases are not fully clear and remain to be determined experimentally, FPRP and IgSF3 likely promote the progression of solid malignant tumors while CD101 seems to modulate immune cells of tumor microenvironment. Distinctive from other tumor regulators, the impacts of EWI subfamily members on solid malignant tumors are likely to be context dependent. In other words, the effect of a given EWI subfamily member on a tumor probably depends on the molecular network and composition of TEMDs in that tumor. Collectively, EWI2 and its relatives are emerged as important regulators of malignant diseases with promising potentials to become anti-cancer therapeutics and cancer therapy targets.


Asunto(s)
Antígenos CD , Proteínas de la Membrana , Neoplasias , Animales , Humanos , Masculino , Ratones , Inmunoglobulinas/genética , Melanoma , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias de la Próstata , Tetraspaninas/genética , Microambiente Tumoral , Antígenos CD/metabolismo
17.
J Biol Chem ; 286(16): 13954-65, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21343309

RESUMEN

CD81 is a tetraspanin protein that is involved in several essential cellular functions, as well as in the hepatitis C virus (HCV) infection. CD81 interacts with a high stoichiometry with its partner proteins EWI-2, EWI-2wint, and EWI-F. These latter proteins modify the functions of CD81 and can thereby potentially inhibit infection or modulate cell migration. Here, we characterized the cleavage of EWI-2 leading to the production of EWI-2wint, which has been shown to inhibit HCV infection. We determined the regions of EWI-2/EWI-2wint and CD81 that are important for their interaction and their functionality. More precisely, we identified a glycine zipper motif in the transmembrane domain of EWI-2/EWI-2wint that is essential for the interaction with CD81. In addition, we found that palmitoylation on two juxtamembranous cysteines in the cytosolic tail of EWI-2/EWI-2wint is required for their interaction with CD81 as well as with CD9, another tetraspanin. Thus, we have shown that palmitoylation of a tetraspanin partner protein can influence the interaction with a tetraspanin. We therefore propose that palmitoylation not only of tetraspanins, but also of their partner proteins is important in regulating the composition of complexes in tetraspanin networks. Finally, we identified the regions in CD81 that are necessary for its functionality in HCV entry and we demonstrated that EWI-2wint needs to interact with CD81 to exert its inhibitory effect on HCV infection.


Asunto(s)
Antígenos CD/química , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Proteínas de la Membrana/química , Secuencias de Aminoácidos , Animales , Biotinilación , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Citosol/metabolismo , Glicina/química , Humanos , Glicoproteínas de Membrana/química , Unión Proteica , Estructura Terciaria de Proteína , Tetraspanina 28 , Tetraspanina 29 , Tetraspaninas
18.
Biochem J ; 437(3): 399-411, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21609323

RESUMEN

The tumour suppressor EWI2 associates with tetraspanins and regulates tumour cell movement and proliferation. The short cytoplasmic domain of EWI2 is positively charged; five out of the ten residues of this domain are basic. In the present study we demonstrated that the EWI2 cytoplasmic tail interacts specifically with negatively charged PIPs (phosphatidylinositol phosphates), but not with other membrane lipids. The PIPs that interact with EWI2 cytoplasmic tail include PtdIns5P, PtdIns4P, PtdIns3P, PtdIns(3,5)P(2) and PtdIns(3,4)P2. The binding affinity of PIPs to the EWI2 tail, however, is not solely based on charge because PtdIns5P, PtdIns4P and PtdIns3P have a higher affinity to EWI2 than PtdIns(3,5)P(2) and PtdIns(3,4)P(2) do. Mutation of either of two basic residue clusters in the EWI2 cytoplasmic tail abolishes PIP binding, and PIP binding is also determined by the position of basic residues in the EWI2 cytoplasmic tail. In addition, EWI2 is constitutively palmitoylated at the cytoplasmic cysteine residues located at the N-terminal of those basic residues. The PIP interaction is not required for, but appears to regulate, the palmitoylation, whereas palmitoylation is neither required for nor regulates the PIP interaction. Functionally, the PIP interaction regulates the stability of EWI2 proteins, whereas palmitoylation is needed for tetraspanin-EWI2 association and EWI2-dependent inhibition of cell migration and lamellipodia formation. For cell-cell adhesion and cell proliferation, the PIP interaction functions in opposition to the palmitoylation. In conclusion, the EWI2 cytoplasmic tail actively engages with the cell membrane via PIP binding and palmitoylation, which play differential roles in EWI2 functions.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica/fisiología , Lipoilación , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Animales , Proteínas Portadoras/genética , Adhesión Celular , Proliferación Celular , Proteínas de la Membrana/genética , Ratones , Células 3T3 NIH , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
19.
J Cardiovasc Dev Dis ; 9(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36354784

RESUMEN

Reactive oxygen species (ROS) dysregulation exacerbates many pathologies but must remain within normal ranges to maintain cell function. Since ROS-mediated pathology and routine cell function are coupled, in vivo models evaluating low-ROS background effects on pathology are limited. Some models alter enzymatic antioxidant expression/activity, while others involve small molecule antioxidant administration. These models cause non-specific ROS neutralization, decreasing both beneficial and detrimental ROS. This is detrimental in cardiovascular pathology, despite the negative effects excessive ROS has on these pathologies. Thus, current trends in ROS-mediated pathology have shifted toward selective inhibition of ROS producers that are dysregulated during pathological insults, such as p66Shc. In this study, we evaluated a zebrafish heterozygote p66Shc hypomorphic mutant line as a low-ROS myocardial infarction (MI) pathology model that mimics mammalian MI. Our findings suggest this zebrafish line does not have an associated negative phenotype, but has decreased body mass and tissue ROS levels that confer protection against ROS-mediated pathology. Therefore, this line may provide a low-ROS background leading to new insights into disease.

20.
Methods Mol Biol ; 2507: 111-141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35773580

RESUMEN

Structural and functional eukaryotic membrane protein research continues to grow at an increasing rate, placing greater significance on leveraging productive protein expression pipelines to feed downstream studies. Bacterial expression systems (e.g., E. coli) are often the preferred system due to their simple growth conditions, relative simplicity in experimental workflow, low overall cost per liter of cell growth, and ease of genetic manipulation. However, overproduction success of eukaryotic membrane proteins in bacterial systems is hindered by the limited native processing ability of bacterial systems for important protein folding interactions (e.g., disulfide bonds), post-translational modifications (e.g., glycosylation), and inherent disadvantages in protein trafficking and folding machinery compared to other expression systems.In contrast, Saccharomyces cerevisiae expression systems combine positive benefits of simpler bacterial systems with those of more complex eukaryotic systems (e.g., mammalian cells). Benefits include inexpensive growth, robust DNA repair and recombination machinery, amenability to high density growths in bioreactors, efficient transformation, and robust post-translational modification machinery. These characteristics make S. cerevisiae a viable first-alternative when bacterial overproduction is insufficient. Thus, this chapter provides a framework, using methods that have proven successful in prior efforts, for overproducing membrane anchored or membrane integrated proteins in S. cerevisiae. The framework is designed to improve yields for all levels of overexpression expertise, providing optimization insights for the variety of processes involved in heterologous protein expression.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Escherichia coli/genética , Glicosilación , Mamíferos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA