Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cardiovasc Drugs Ther ; 33(1): 13-23, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30637549

RESUMEN

PURPOSE: Necroptosis is an important form of cell death following myocardial ischemia/reperfusion (I/R) and phosphoglycerate mutase 5 (PGAM5) functions as the convergent point for multiple necrosis pathways. This study aims to investigate whether inhibition of PGAM5 could reduce I/R-induced myocardial necroptosis and the underlying mechanisms. METHODS: The SD rat hearts (or H9c2 cells) were subjected to 1-h ischemia (or 10-h hypoxia) plus 3-h reperfusion (or 4-h reoxygenation) to establish the I/R (or H/R) injury model. The myocardial injury was assessed by the methods of biochemistry, H&E (hematoxylin and eosin), and PI/DAPI (propidium iodide/4',6-diamidino-2-phenylindole) staining, respectively. Drug interventions or gene knockdown was used to verify the role of PGAM5 in I/R (or H/R)-induced myocardial necroptosis and possible mechanisms. RESULTS: The I/R-treated heart showed the injuries (increase in infarct size and creatine kinase release), upregulation of PGAM5, dynamin-related protein 1 (Drp1), p-Drp1-S616, and necroptosis-relevant proteins (RIPK1/RIPK3, receptor-interacting protein kinase 1/3; MLKL, mixed lineage kinase domain-like); these phenomena were attenuated by inhibition of PGAM5 or RIPK1. In H9c2 cells, H/R treatment elevated the levels of PGAM5, RIPK1, RIPK3, MLKL, Drp1, and p-Drp1-S616 and induced mitochondrial dysfunctions (elevation in mitochondrial membrane potential and ROS level) and cellular necrosis (increase in LDH release and the ratio of PI+/DAPI+ cells); these effects were blocked by inhibition or knockdown of PGAM5. CONCLUSIONS: Inhibition of PGAM5 can reduce necroptosis in I/R-treated rat hearts through suppression of Drp1; there is a positive feedback between RIPK1 and PGAM5, and PGAM5 might serve as a novel therapeutic target for prevention of myocardial I/R injury.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Inhibidores Enzimáticos/farmacología , Glicolatos/farmacología , Proteínas Mitocondriales/antagonistas & inhibidores , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Fosfoglicerato Mutasa/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Masculino , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Sprague-Dawley , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Transducción de Señal/efectos de los fármacos
2.
Biochem Biophys Res Commun ; 467(4): 859-65, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26474698

RESUMEN

Myeloperoxidase (MPO)-derived product hypochlorous acid (HOCl) is able to induce cellular senescence and MPO is also expressed in endothelial cells besides the well-recognized immune cells. This study aims to clarify the association of endothelium-derived MPO with endothelial senescence in hyperlipidemia. The rats were fed with high-fat diet for 8 weeks to establish a hyperlipidemic model, which showed an increase in plasma lipids, endothelium-derived MPO expression, endothelial senescence and endothelial dysfunction concomitant with a reduction in glycogen synthase kinase 3 beta (GSK-3ß) activity and phosphorylated ß-catenin (p-ß-catenin) level as well as an increase in ß-catenin and p53 levels within the endothelium. Next, human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low density lipoprotein (ox-LDL, 100 µg/ml) for 24 h to establish a senescent cell model in vitro. Consistent with the finding in vivo, ox-LDL-induced MPO expression and HUVECs senescence, accompanied by a decrease in GSK-3ß activity and p-ß-catenin level as well as an increase in HOCl content, ß-catenin and p53 levels; these phenomena were attenuated by MPO inhibitor. Replacement of ox-LDL with HOCl could also induce HUVECs senescence and activate the ß-catenin/p53 pathway. Based on these observations, we conclude that endothelium-derived MPO is upregulated in hyperlipidemic rats, which may contribute to the accelerated vascular endothelial senescence through a mechanism involving the ß-catenin/p53 pathway.


Asunto(s)
Células Endoteliales/metabolismo , Hiperlipidemias/metabolismo , Ácido Hipocloroso/metabolismo , Lipoproteínas LDL/metabolismo , Peroxidasa/metabolismo , beta Catenina/metabolismo , Animales , Senescencia Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hiperlipidemias/patología , Ácido Hipocloroso/farmacología , Lípidos/sangre , Lipoproteínas LDL/farmacología , Masculino , Peroxidasa/química , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/metabolismo
3.
Clin Exp Pharmacol Physiol ; 42(1): 22-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25311974

RESUMEN

Clopidogrel has been shown to improve endothelial function in vitro and in patients with coronary artery disease. However, it remains unclear whether such an effect of clopidogrel is associated with CYP2C19 polymorphisms that determine the antiplatelet effect of clopidogrel. After genotyping, 12 healthy participants were enrolled in the study. Among them, six participants were CYP2C19*1/*1 (extensive metabolizers; EM) and the other six participants were CYP2C19*2/*2 or *3 (poor metabolizers; PM). All participants received 300 mg clopidogel orally. Endothelial function was assessed by measurement of flow-mediated dilation of the brachial artery, and adenosine diphosphate-induced platelet aggregation was determined by using optical aggregometry at 0, 4 and 24 h after administration of 300 mg clopidogrel. Flow-mediated dilation was significantly higher at 4 and 24 h after a loading-dose administration of clopidogrel in both the CYP2C19 EM and PM groups, but showed no significant difference between the two groups. Adenosine diphosphate-induced platelet aggregation was significantly inhibited at 4 and 24 h after administration of clopidogrel in the CYP2C19 EM group. However, there was no statistical correlation between the change in flow-mediated dilation and adenosine diphosphate-induced platelet aggregation in the two CYP2C19 groups. This is the first study to report that clopidogrel improves endothelial function in healthy Chinese subjects, which is unrelated with the CYP2C19 genotype and independent of antiplatelet action.


Asunto(s)
Pueblo Asiatico/genética , Citocromo P-450 CYP2C19/genética , Endotelio Vascular/efectos de los fármacos , Genotipo , Inhibidores de Agregación Plaquetaria/farmacología , Ticlopidina/análogos & derivados , Adulto , Clopidogrel , Endotelio Vascular/fisiología , Humanos , Masculino , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/genética , Ticlopidina/farmacología , Resultado del Tratamiento , Adulto Joven
4.
Atherosclerosis ; 274: 128-138, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29772481

RESUMEN

BACKGROUND AND AIMS: Vascular peroxidase 1 (VPO1) plays a key role in mediation of cardiovascular oxidative injury. This study aims to determine whether VPO1 can promote programmed necrosis of endothelial cells and the underlying mechanisms. METHODS AND RESULTS: Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL, 100 µg/mL) for 48 h to induce cell injury, which showed an elevation in cell necrosis (reflected by the increased propidium iodide (PI) positive-staining cells, LDH release and decreased cell viability), concomitant with an increase in programmed necrosis-relevant proteins including receptor-interacting protein kinase 1/3 (RIPK1/3), p-RIPK3 and mixed lineage kinase domain like (MLKL); these phenomena were attenuated by necrostatin-1(Nec-1) and RIPK3 siRNA. Meanwhile, VPO1 was up-regulated in ox-LDL-treated endothelial cells accompanied by a decrease in GSK-3ß activity and p-ß-catenin levels, and an elevation of ß-catenin levels; these phenomena were reversed in the presence of VPO1 siRNA or hypochlorous acid (HOCl) inhibitor; replacement of ox-LDL with HOCl could also induce endothelial programmed necrosis and activate the ß-catenin signaling; ß-catenin inhibitor could also suppress ox-LDL-induced RIPK-dependent necrosis. In hyperlipidemic patients, the plasma level of VPO1 was obviously increased concomitant with an elevation in plasma levels of RIPK1, RIPK3 and MLKL, and they were positively correlated. CONCLUSIONS: VPO1 plays an important role in promotion of endothelial programmed necrosis under hyperlipidemic conditions through activation of ß-catenin signaling. It may serve as a novel therapeutic target for prevention of endothelial dysfunction in hyperlipidemia.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Hiperlipidemias/enzimología , Lipoproteínas LDL/toxicidad , Peroxidasas/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/patología , Imidazoles/farmacología , Indoles/farmacología , Masculino , Necrosis , Peroxidasas/sangre , Peroxidasas/genética , Fosforilación , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
5.
Korean J Intern Med ; 33(2): 313-322, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28899085

RESUMEN

BACKGROUND/AIMS: NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (NOX)-mediated oxidative stress plays a key role in promotion of oxidative injury in the cardiovascular system. The aim of this study is to evaluate the status of NOX in endothelial progenitor cells (EPCs) of hyperlipidemic patients and to assess the correlation between NOX activity and the functions EPCs. METHODS: A total of 30 hyperlipidemic patients were enrolled for this study and 30 age-matched volunteers with normal level of plasma lipids served as controls. After the circulating EPCs were isolated, the EPC functions (migration, adhesion and tube formation) were evaluated and the status of NOX (expression and activity) was examined. RESULTS: Compared to the controls, hyperlipidemic patients showed an increase in plasma lipids and a reduction in EPC functions including the attenuated abilities in adhesion, migration and tube formation, concomitant with an increase in NOX expression (NOX2 and NOX4), NOX activity, and reactive oxygen species production. The data analysis showed negative correlations between NOX activity and EPC functions. CONCLUSIONS: There is a positive correlation between the NOX-mediated oxidative stress and the dysfunctions of circulating EPCs in hyperlipidemic patients, and suppression of NOX might offer a novel strategy to improve EPCs functions in hyperlipidemia.


Asunto(s)
Células Progenitoras Endoteliales/fisiología , Hiperlipidemias/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Estudios de Casos y Controles , Adhesión Celular , Movimiento Celular , China , Células Progenitoras Endoteliales/metabolismo , Femenino , Humanos , Hiperlipidemias/fisiopatología , Lípidos/sangre , Masculino , Persona de Mediana Edad , Especies Reactivas de Oxígeno
6.
Mech Ageing Dev ; 169: 10-18, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29248491

RESUMEN

Statins are reported to exert benefits on endothelial function through a mechanism involving in prevention of endothelial senescence. This study aims to explore whether atorvastatin exerts inhibitory effect on endothelial senescence in hyperlipidemic rats or ox-LDL-treated HUVECs through a mechanism involving suppress of miR-21-5p/203a-3p expression and their downstream pathway. The rats were fed with high-fat diet to establish a hyperlipidemic model, which showed an increase in plasma lipids and endothelial senescence, accompanied by the elevation in plasma levels of miR-21-5p/203a-3p, down-regulation of Drp1 and up-regulation of p53 in the aorta of hyperlipidemic rats; these phenomena were reversed by atorvastatin. Next, HUVECs were incubated with ox-LDL to establish a senescent model in vitro. Consistent with the finding in vivo, atorvastatin treatment decreased the level of miR-21-5p and miR-203a-3p in the ox-LDL-treated HUVECs, restored Drp1 expression and mitochondrial function, as well as suppressed p53 and p16 expression and endothelial senescence. Based on these observations, we conclude that atorvastatin exerts inhibitory effect on endothelial senescence in hyperlipidemic rats through a mechanism involving down-regulation of miR-21-5p/203a-3p, which leads to the restoration of Drp1 level and recovery of mitochondrial function. Our findings highlight a novel non-lipid effect for atorvastatin besides its function in modulation of lipids.


Asunto(s)
Aorta/metabolismo , Atorvastatina/farmacología , Senescencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/metabolismo , Hiperlipidemias/metabolismo , MicroARNs/biosíntesis , Animales , Aorta/patología , Dinaminas/biosíntesis , Células Endoteliales/patología , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/patología , Masculino , Ratas , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/biosíntesis
7.
Ther Clin Risk Manag ; 11: 309-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25750535

RESUMEN

BACKGROUND: Hypertension is the most common chronic disease and the calcium channel antagonist is the most popularly used antihypertensive drug in Chinese patients. Azelnidipine is a third generation and long-acting dihydropyridine calcium channel antagonist. A series of research has demonstrated that azelnidipine produced an effective antihypertensive effect in patients with essential hypertension. Now it is need to summarize clinical use of azelnidipine in the treatment of hypertension in Chinese patients. METHODS: Relevant literature was identified by performing searches in PubMed and CNKI (China National Knowledge Infrastructure), covering the period from January 2003 (the year azelnidipine was launched) to July 2014. We included studies that described pharmacology of azelnidipine, especially the pharmacokinetics, clinical efficacy, and safety and tolerability of azelnidipine in a Chinese population. The full text of each article was strictly reviewed, and data interpretation was performed. RESULTS: In Chinese healthy volunteers, a single-dose oral administration of azelnidipine 8-16 mg had a peak plasma concentration of 1.66-23.06 ng/mL and time to peak plasma concentration was 2.6-4.0 hours and the area under the plasma concentration versus time curve from time 0 hour to 96 hours was 17.9-429 ng/mL·h and elimination half-life was 16.0-28.0 hours. A number of clinical trials have demonstrated that azelnidipine produced a significant reduction in blood pressure in Chinese patients with mild-to-moderate hypertension, which was similar to that of other effective antihypertensive drugs such as amlodipine, zofenopril, and nifedipine. In addition to its antihypertensive effect, azelnidipine had other cardiovascular protective effects as well, like anti-oxidative action, decreasing heart rate, and improving systolic and diastolic function. Azelnidipine was generally well tolerated in Chinese patients and no severe adverse events were observed. CONCLUSION: Azelnidipine is effective and safe in the treatment of hypertension in Chinese patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA