Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38058185

RESUMEN

Genomic prediction (GP) uses single nucleotide polymorphisms (SNPs) to establish associations between markers and phenotypes. Selection of early individuals by genomic estimated breeding value shortens the generation interval and speeds up the breeding process. Recently, methods based on deep learning (DL) have gained great attention in the field of GP. In this study, we explore the application of Transformer-based structures to GP and develop a novel deep-learning model named GPformer. GPformer obtains a global view by gleaning beneficial information from all relevant SNPs regardless of the physical distance between SNPs. Comprehensive experimental results on five different crop datasets show that GPformer outperforms ridge regression-based linear unbiased prediction (RR-BLUP), support vector regression (SVR), light gradient boosting machine (LightGBM) and deep neural network genomic prediction (DNNGP) in terms of mean absolute error, Pearson's correlation coefficient and the proposed metric consistent index. Furthermore, we introduce a knowledge-guided module (KGM) to extract genome-wide association studies-based information, which is fused into GPformer as prior knowledge. KGM is very flexible and can be plugged into any DL network. Ablation studies of KGM on three datasets illustrate the efficiency of KGM adequately. Moreover, GPformer is robust and stable to hyperparameters and can generalize to each phenotype of every dataset, which is suitable for practical application scenarios.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Genéticos , Humanos , Genotipo , Teorema de Bayes , Genómica/métodos , Fenotipo , Polimorfismo de Nucleótido Simple
2.
Plant Cell ; 34(2): 927-944, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34865139

RESUMEN

High soil salinity negatively affects plant growth and development, leading to a severe decrease in crop production worldwide. Here, we report that a secreted peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), plays an essential role in plant salt tolerance through RECEPTOR-LIKE KINASE 7 (RLK7) in Arabidopsis (Arabidopsis thaliana). The gene encoding the PIP3 precursor, prePIP3, was significantly induced by salt stress. Plants overexpressing prePIP3 exhibited enhanced salt tolerance, whereas a prePIP3 knockout mutant had a salt-sensitive phenotype. PIP3 physically interacted with RLK7, a leucine-rich repeat RLK, and salt stress enhanced PIP3-RLK7 complex formation. Functional analyses revealed that PIP3-mediated salt tolerance is dependent on RLK7. Exogenous application of synthetic PIP3 peptide activated RLK7, and salt treatment significantly induced RLK7 phosphorylation in a PIP3-dependent manner. Notably, MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 were downstream of the PIP3-RLK7 module in salt response signaling. Activation of MPK3/6 was attenuated in pip3 or rlk7 mutants under saline conditions. Therefore, MPK3/6 might amplify salt stress response signaling in plants for salt tolerance. Collectively, our work characterized a novel ligand-receptor signaling cascade that modulates plant salt tolerance in Arabidopsis. This study contributes to our understanding of how plants respond to salt stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tolerancia a la Sal , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Estrés Salino/fisiología , Tolerancia a la Sal/fisiología
3.
FASEB J ; 38(10): e23661, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38733310

RESUMEN

Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Ratones Noqueados , Microtúbulos , Prurito , Canales Catiónicos TRPV , Animales , Humanos , Masculino , Ratones , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ganglios Espinales/metabolismo , Células HEK293 , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Prurito/metabolismo , Prurito/genética , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética
4.
Chem Rev ; 123(16): 10135-10155, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37534710

RESUMEN

Over the last few decades, various forms of regulated cell death (RCD) have been discovered and were found to improve cancer treatment. Although there are several reviews on RCD induced by photodynamic therapy (PDT), a comprehensive summary covering metal-based photosensitizers (PSs) as RCD inducers has not yet been presented. In this review, we systematically summarize the works on metal-based PSs that induce different types of RCD, including ferroptosis, immunogenic cell death (ICD), and pyroptosis. The characteristics and mechanisms of each RCD are explained. At the end of each section, a summary of the reported commonalities between different metal-based PSs inducing the same RCD is emphasized, and future perspectives on metal-based PSs inducing novel forms of RCD are discussed at the end of the review. Considering the essential roles of metal-based PSs and RCD in cancer therapy, we hope that this review will provide the stage for future advances in metal-based PSs as RCD inducers.


Asunto(s)
Neoplasias , Fotoquimioterapia , Muerte Celular Regulada , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Metales , Neoplasias/tratamiento farmacológico
5.
Curr Opin Lipidol ; 35(2): 93-100, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299384

RESUMEN

PURPOSE OF REVIEW: Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH. RECENT FINDINGS: The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective. SUMMARY: More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.


Asunto(s)
Enfermedades Cardiovasculares , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol/genética , Pruebas Genéticas , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Tamizaje Masivo
6.
Anal Chem ; 96(32): 13191-13196, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39074853

RESUMEN

Extracellular enzymes are not only strongly correlated with disease development but also play critical roles in modulating immune responses. Therefore, real-time monitoring of extracellular enzymatic activity can afford straightforward insights into their spatiotemporal dynamics upon drug stimulus, and provide promising tools to unravel their key roles in modulating the cell signaling. Although DNA-based sensing probes have been frequently developed for the detection of a variety of biomolecules, there still lacks a modular design strategy for amplified imaging of extracellular enzymatic activity associated with live cells. Herein, we developed an enzymatically triggerable signal amplification strategy for real-time dynamic imaging of extracellular enzyme activity through a cell membrane-confined hybrid chain reaction (HCR). We demonstrated that, by modifying the initiator DNA with enzyme-specific incision sites and cholesterol tail, extracellular enzyme-trigged HCR could be fulfilled on the surface of the cellular membrane, facilitating amplified detection of extracellular enzymatic activity. Dynamic monitoring of enzyme secretion of cancer cells upon stimulus or macrophage cells upon inflammation challenge has also been achieved. We envision that the design strategy could provide valuable information for dissecting the role of extracellular enzymes in modulating cell responses to drug treatment.


Asunto(s)
Membrana Celular , Humanos , Membrana Celular/metabolismo , Animales , Ratones , Células RAW 264.7 , ADN/metabolismo , ADN/química , Colesterol/metabolismo , Colesterol/análisis , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos
7.
Biochem Biophys Res Commun ; 715: 149996, 2024 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678781

RESUMEN

Diabetes is linked to male infertility, but the mechanisms and therapeutic options remain unclear. This study investigates the effects of semaglutide on testicular function in a diabetes mouse model. Clinical data shows that diabetes affects blood glucose, lipid levels, and sperm quality. Single-cell and transcriptome analyses reveal changes in testicular tissue cell proportions and activation of ferroptosis pathways in diabetic patients/rats. In the diabetes mouse model, sperm quality decreases significantly. Treatment with semaglutide (Sem) and the ferroptosis inhibitor ferrostatin-1 (Fer-1) alleviates testicular damage, as evidenced by improved lipid peroxidation and ferroptosis markers. Moreover, the diabetes-induced decrease in the TM-3 cell line's vitality, increased lipid peroxidation, ROS, ferrous ions, and mitochondrial membrane potential damage are all improved by semaglutide and ferrostatin-1 intervention. Overall, these findings highlight semaglutide's potential as a therapeutic approach for mitigating diabetes-induced testicular damage through modulation of the ferroptosis pathway.


Asunto(s)
Ferroptosis , Péptidos Similares al Glucagón , Testículo , Masculino , Ferroptosis/efectos de los fármacos , Animales , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/uso terapéutico , Ratones , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Línea Celular , Ratones Endogámicos C57BL , Peroxidación de Lípido/efectos de los fármacos , Ratas
8.
Opt Express ; 32(3): 3379-3393, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297560

RESUMEN

In contrast to conventional emitters fashioned from traditional materials, tunable thermal emitters exhibit a distinct propensity to fulfill the demands of diverse scenarios, thereby engendering an array of prospects within the realms of communications, military applications, and control systems. In this paper, a tunable thermal emitter without continuous external excitation is introduced using Ge2Sb2Te5 (GST) and high-temperature-resistant material Mo. It is automatically optimized by inverse design with genetic algorithm (GA) to switch between different functions according to the object temperature to adapt to diverse scenarios. In "off" mode, the emitter orchestrates a blend of infrared (IR) stealth and thermal management. This is evidenced by average absorptivity values of 0.08 for mid-wave infrared (MIR, 3-5 µm), 0.19 for long-wave infrared (LIR, 8-14 µm), and 0.68 for the non-atmospheric window (NAW, 5-8 µm). Conversely, when confronted with high-temperature entities, the emitter seamlessly transitions to "on" mode, instigating a process of radiative cooling. This transformation is reflected in the augmented emissivity of the dual-band atmospheric window including MIR and LIR, attaining peak values of 0.96 and 0.97. This transition yields a cooling potential, quantified at 64 W/m2 at the ambient temperature of 25°C. In addition, our design employs a layered structure, which avoids complex patterned resonators and facilitates large-area fabrication. The emitter in this paper evinces robust insensitivity to polarization variations and the angle of incidence. We believe that this work will contribute to the development in the fields of dynamic tunability for IR stealth, dynamic radiative cooling systems, and thermal imaging.

9.
Inorg Chem ; 63(34): 15667-15678, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39099326

RESUMEN

Using the Schiff base ligand H2L-pyra (N'-(2-hydroxybenzoyl)pyrazine-2-carbohydrazonamide) with multiple dentate sites, the trinuclear DyIII-based complex [Dy3(HL-pyra)2(L-pyra)2(CH3COO)3]·2H2O (1) was synthesized. By analyzing the fragmented assembly process and fine-tuning the bridging anions, complex [Dy4(HL-pyra)2(L-pyra)4(NO3)2(H2O)2]·8H2O (2) with different nuclear numbers was successfully synthesized. Magnetic studies demonstrated that 1 did not exhibit magnetic relaxation behavior under the external field; however, 2 exhibited zero-field single-molecule magnetic relaxation behavior with an effective energy barrier (Ueff) of 197.44 K. This is attributed to the improved anisotropy of the single ion after the normalization of the crystal structure, thus realizing the molecular magnetic switching. Moreover, magnetic dilution analysis of 2 demonstrated that the weak magnetic interaction between metal ions inhibited the occurrence of quantum tunneling of magnetization (QTM), resulting in high-performance single-molecule magnet (SMM) behavior. The reasons for the magnetic difference between these two complexes were analyzed using ab initio calculation and magneto-structural correlations. This study provides a reasonable prediction of the ideal configuration of the approximately parallelogram DyIII-based SMMs, thus offering an effective approach for synthesizing Dy4 complexes with excellent properties.

10.
BMC Public Health ; 24(1): 1287, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730364

RESUMEN

BACKGROUND: Frailty not only affects disease survival but also impacts the long-term function and quality life of all adults diagnosed with and/or treated for cancer.The American Heart Association has introduced Life's Essential 8 (LE8) as a novel metric for assessing cardiovascular health. Currently, LE8's application in evaluating the frailty of cancer survivors remains unreported. This research seeks to explore the connection between LE8 scores and frailty levels in cancer survivors across the United States, thereby addressing a significant void in existing studies. METHODS: This study analyzed data from cancer survivors enrolled in the National Health and Nutrition Examination Surveys (NHANES) spanning the years 2005 to 2018, providing a comprehensive dataset. Multivariable logistic regression models were used to examine the linkage between LE8 rankings and frailty condition in cancer survivors. Furthermore, the study delved deeper into this correlation using restricted cubic spline (RCS) curves and subgroup analyses. RESULTS: In the fully adjusted model, an increased LE8 level was closely associated with a reduced odds ratio of frailty among cancer survivors, with an OR of 0.95 (95% CI: 0.94-0.96, p < 0.0001).This pattern persisted across different categorizations of LE8 into low, moderate, and high groups, demonstrating a consistent trend. The analysis revealed a non-linear relationship between LE8 scores and frailty status, further supporting a straightforward association (p-value for non-linearity = 0.0729). CONCLUSION: Studies have found that the higher the LE8 score, the less likely a cancer patient is to develop debilitating symptoms.This indicates that the LE8 scores may provide an opportunity for interventions aimed at improving the prognosis of cancer patients.


Asunto(s)
Supervivientes de Cáncer , Fragilidad , Encuestas Nutricionales , Humanos , Masculino , Estados Unidos/epidemiología , Femenino , Fragilidad/epidemiología , Supervivientes de Cáncer/estadística & datos numéricos , Supervivientes de Cáncer/psicología , Estudios Transversales , Persona de Mediana Edad , Anciano , Adulto , Calidad de Vida , Neoplasias/mortalidad
11.
Artículo en Inglés | MEDLINE | ID: mdl-38818580

RESUMEN

Fibroblast growth factor (FGF) isoform 13, a distinct type of FGF, boasts significant potential for therapeutic intervention in cardiovascular dysfunctions. However, its impact on regulating fibrosis remains unexplored. This study aims to elucidate the role and mechanism of FGF13 on cardiac fibrosis. Here, we show that following transverse aortic constriction (TAC) surgery, interstitial fibrosis and collagen content increase in mice, along with reduced ejection fraction and fractional shortening, augmented heart mass. However, following Fgf13 deletion, interstitial fibrosis is decreased, ejection fraction and fractional shortening are increased, and heart mass is decreased, compared with those in the TAC group. Mechanistically, incubation of cardiac fibroblasts with transforming growth factor ß (TGFß) increases the expressions of types I and III collagen proteins, as well as α-smooth muscle actin (α-SMA) proteins, and enhances fibroblast proliferation and migration. In the absence of Fgf13, the expressions of these proteins are decreased, and fibroblast proliferation and migration are suppressed, compared with those in the TGFß-stimulated group. Overexpression of FGF13, but not FGF13 mutants defective in microtubule binding and stabilization, rescues the decrease in collagen and α-SMA protein and weakens the proliferation and migration function of the Fgf13 knockdown group. Furthermore, Fgf13 knockdown decreases ROCK protein expression via microtubule disruption. Collectively, cardiac Fgf13 knockdown protects the heart from fibrosis in response to haemodynamic stress by modulating microtubule stabilization and ROCK signaling pathway.

12.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619103

RESUMEN

We evaluated the potential for a monoclonal antibody antagonist of the glucagon receptor (Ab-4) to maintain glucose homeostasis in type 1 diabetic rodents. We noted durable and sustained improvements in glycemia which persist long after treatment withdrawal. Ab-4 promoted ß-cell survival and enhanced the recovery of insulin+ islet mass with concomitant increases in circulating insulin and C peptide. In PANIC-ATTAC mice, an inducible model of ß-cell apoptosis which allows for robust assessment of ß-cell regeneration following caspase-8-induced diabetes, Ab-4 drove a 6.7-fold increase in ß-cell mass. Lineage tracing suggests that this restoration of functional insulin-producing cells was at least partially driven by α-cell-to-ß-cell conversion. Following hyperglycemic onset in nonobese diabetic (NOD) mice, Ab-4 treatment promoted improvements in C-peptide levels and insulin+ islet mass was dramatically increased. Lastly, diabetic mice receiving human islet xenografts showed stable improvements in glycemic control and increased human insulin secretion.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Diabetes Mellitus Experimental/terapia , Células Secretoras de Glucagón/efectos de los fármacos , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Receptores de Glucagón/antagonistas & inhibidores , Animales , Glucemia/metabolismo , Péptido C/metabolismo , Linaje de la Célula/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Expresión Génica , Glucagón/antagonistas & inhibidores , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos , Ratones , Ratones Endogámicos NOD , Tamaño de los Órganos/efectos de los fármacos , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Resultado del Tratamiento
13.
J Med Internet Res ; 26: e57037, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163598

RESUMEN

BACKGROUND: ChatGPT is a natural language processing model developed by OpenAI, which can be iteratively updated and optimized to accommodate the changing and complex requirements of human verbal communication. OBJECTIVE: The study aimed to evaluate ChatGPT's accuracy in answering orthopedics-related multiple-choice questions (MCQs) and assess its short-term effects as a learning aid through a randomized controlled trial. In addition, long-term effects on student performance in other subjects were measured using final examination results. METHODS: We first evaluated ChatGPT's accuracy in answering MCQs pertaining to orthopedics across various question formats. Then, 129 undergraduate medical students participated in a randomized controlled study in which the ChatGPT group used ChatGPT as a learning tool, while the control group was prohibited from using artificial intelligence software to support learning. Following a 2-week intervention, the 2 groups' understanding of orthopedics was assessed by an orthopedics test, and variations in the 2 groups' performance in other disciplines were noted through a follow-up at the end of the semester. RESULTS: ChatGPT-4.0 answered 1051 orthopedics-related MCQs with a 70.60% (742/1051) accuracy rate, including 71.8% (237/330) accuracy for A1 MCQs, 73.7% (330/448) accuracy for A2 MCQs, 70.2% (92/131) accuracy for A3/4 MCQs, and 58.5% (83/142) accuracy for case analysis MCQs. As of April 7, 2023, a total of 129 individuals participated in the experiment. However, 19 individuals withdrew from the experiment at various phases; thus, as of July 1, 2023, a total of 110 individuals accomplished the trial and completed all follow-up work. After we intervened in the learning style of the students in the short term, the ChatGPT group answered more questions correctly than the control group (ChatGPT group: mean 141.20, SD 26.68; control group: mean 130.80, SD 25.56; P=.04) in the orthopedics test, particularly on A1 (ChatGPT group: mean 46.57, SD 8.52; control group: mean 42.18, SD 9.43; P=.01), A2 (ChatGPT group: mean 60.59, SD 10.58; control group: mean 56.66, SD 9.91; P=.047), and A3/4 MCQs (ChatGPT group: mean 19.57, SD 5.48; control group: mean 16.46, SD 4.58; P=.002). At the end of the semester, we found that the ChatGPT group performed better on final examinations in surgery (ChatGPT group: mean 76.54, SD 9.79; control group: mean 72.54, SD 8.11; P=.02) and obstetrics and gynecology (ChatGPT group: mean 75.98, SD 8.94; control group: mean 72.54, SD 8.66; P=.04) than the control group. CONCLUSIONS: ChatGPT answers orthopedics-related MCQs accurately, and students using it excel in both short-term and long-term assessments. Our findings strongly support ChatGPT's integration into medical education, enhancing contemporary instructional methods. TRIAL REGISTRATION: Chinese Clinical Trial Registry Chictr2300071774; https://www.chictr.org.cn/hvshowproject.html ?id=225740&v=1.0.


Asunto(s)
Educación de Pregrado en Medicina , Ortopedia , Humanos , Ortopedia/educación , Educación de Pregrado en Medicina/métodos , Femenino , Masculino , Estudiantes de Medicina/estadística & datos numéricos , Procesamiento de Lenguaje Natural , Adulto Joven , Evaluación Educacional/métodos
14.
Foodborne Pathog Dis ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120981

RESUMEN

Salmonella is a foodborne zoonotic pathogen that threatens food safety and public health. However, few people have conducted long-term and systematic studies on Salmonella contamination in food in Yantai City. In order to investigate the situation of Salmonella contamination in food and improve the ability of early warning and control of foodborne diseases, a total of 3420 samples from 20 categories were collected from 13 monitoring points in Yantai City, from 2010 to 2023. The difference in detection rate and bacterial strain of different monitoring points, different types, and different sources of samples was compared. Of the 3420 samples, 80 were positive with a detection rate of 2.34%. Salmonella detection rates were significantly different for samples collected at different monitoring sites. Salmonella was detected only in meat and meat products and catering food, and none of the other types were detected. The detection rate of Salmonella was higher in raw animal meat and raw poultry. Samples collected at the market stage had the highest detection rate (5.81%), and there was a significant difference in detection rate between samples from different sources (χ2 = 36.93, p < 0.05). Eighty-one strains of Salmonella were detected out of 3420 samples (2 different strains were detected in 1 positive sample). The serological test identified 8 groups and 27 serotypes. The dominant serum groups were group B 30.86% (25/81), group E1 23.46% (19/81), and group D 16.05% (13/81). The main dominant serotypes were Salmonella give 17.28% (14/81), Salmonella enteritidis 16.05% (13/81), and Salmonella derby 13.58% (11/81). Meat and meat products and catering food were the main food products contaminated with Salmonella. The resulting secondary contamination is the hidden threat of foodborne diseases and should be given sufficient attention.

15.
Molecules ; 29(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39339326

RESUMEN

Polyurethane (PU) materials are extensively utilized in power equipment. This paper introduces a comprehensive evaluation method that combines electromagnetics and computational chemistry based on the Density Functional Theory (DFT) to elucidate the impact of external electric fields on the molecular structure of PU during electrical contact. The study focuses on the microstructural and molecular energy changes in the hard (HS) and soft (SS) segments of PU under the influence of an electric field of uniform intensity. Findings indicate that the total energy of HS molecules decreases markedly as the electric field intensity increases, accompanied by a significant rise in both the dipole moment and polarizability. Conversely, the total energy and polarizability of the SS molecules decrease, while the dipole moment experiences a slight increase. Under the influence of a strong electric field, HS molecules tend to stretch towards the extremities of the main chain, leading to structural instability and the cleavage of hydroxyl O-H bonds. Meanwhile, the carbon chain of the SS molecules twists towards the center under the electric field, with no chemical bond rupture observed. At an electric field intensity of 8.227 V/nm, the HOMO-LUMO gap of the HS molecule narrows sharply, signifying a rapid decline in the molecular structure stability, corroborated by infrared spectroscopy analysis. These findings offer theoretical insights and guidance for the modification of PU materials in power equipment applications.

16.
Plant Cell Physiol ; 64(7): 814-825, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37148388

RESUMEN

Floods impose detrimental effects on natural and agro-ecosystems, leading to a significant loss of worldwide crop production. Global climate change has even worsened this situation. Flooding is a continuous process including two stages of submergence and re-oxygenation, and both are harmful to plant growth and development, resulting in a serious decline in crop yield. Therefore, the understanding of plant flooding tolerance and developing flooding-resistant crops are of great significance. Here, we report that the Arabidopsis thaliana (Arabidopsis) R2R3-MYB transcription factor MYB30 participates in plant submergence response through 1-aminocyclopropane-1-carboxylic acid synthase 7 (ACS7) by repressing ethylene (ET) biosynthesis. The MYB30 loss-of-function mutant exhibits reduced submergence tolerance with a higher level of ET production, whereas the MYB30-overexpressing plant displays enhanced submergence tolerance and repressed ET production. The coding gene of ACS7 might be a direct target of MYB30 during the submergence response. MYB30 binds to the promoter of ACS7 and represses its transcription. The ACS7 loss-of-function mutant with defect in ET biosynthesis displays enhanced submergence tolerance, whereas plants overexpressing ACS7 exhibit a submergence-sensitive phenotype. Genetic analysis shows that ACS7 functions downstream of MYB30 in both ET biosynthesis and submergence response. Taken together, our work revealed a novel transcriptional regulation that modulates submergence response in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ecosistema , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regiones Promotoras Genéticas/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Bioconjug Chem ; 34(12): 2337-2344, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37948301

RESUMEN

Ferroptosis is an iron-dependent lipid-peroxidation-driven mechanism of cell death and a promising therapeutic target to eradicate cancer cells. In this study, we discovered that boronic acid-derived salicylidenehydrazone (BASHY) dyes are highly efficient singlet-oxygen photosensitizers (PSs; ΦΔ up to 0.8) that induce ferroptosis triggered by photodynamic therapy. The best-performing BASHY dye displayed a high phototoxicity against the human glioblastoma multiform U87 cell line, with an IC50 value in the low nanomolar range (4.40 nM) and a remarkable phototoxicity index (PI > 22,700). Importantly, BASHY dyes were shown to accumulate in lipid droplets (LDs) and this intracellular partition was found to be essential for the enhanced phototoxicity and the induction of ferroptosis through lipid peroxidation. The safety and phototoxicity of this platform were validated using an in vivo zebrafish model (Danio rerio).


Asunto(s)
Ferroptosis , Fármacos Fotosensibilizantes , Animales , Humanos , Fármacos Fotosensibilizantes/farmacología , Colorantes , Peroxidación de Lípido , Gotas Lipídicas , Pez Cebra
18.
Opt Express ; 31(20): 33622-33637, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859139

RESUMEN

Infrared (IR) thermal camouflage and management are deeply desirable in the field of military and astronomy. While IR compatible with laser camouflage technology is extensively studied to counter modern detection systems, most existing strategies for visible light camouflage focus on color matching, which is not suitable for scenarios requiring transparency. In this work, we propose an optically transparent metamaterial with multi-band compatible camouflage capability based on the inverse design. The metamaterial consists of Ag grating, Si3N4 dielectric spacer layer, Ag reflection layer, and Si3N4 anti-reflective layer. An ideal multi-band compatible spectrum is involved in the inverse design algorithm. Calculated results demonstrate high transmittance (T0.38-0.78µm = 0.70) in the visible region, low reflectance (R1.55µm = 0.01) in laser working wavelength, high reflectance (R3-5µm = 0.86 and R8-14µm = 0.92) in the dual-band atmospheric window, and high emissivity (ɛ5-8µm = 0.61) for the non-atmospheric window. The radiative heat flux in the detected band is 31W/m2 and 201W/m2 respectively. Furthermore, the incident and polarized insensitivity of the proposed metamaterial supports applicability for practical situations. This work, emphasizes an effective strategy for conducting optically transparent design with compatible IR-laser camouflage as well as radiative cooling properties by an automated design approach.

19.
Opt Express ; 31(22): 35653-35669, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017732

RESUMEN

In recent years, structural color has developed rapidly due to its distinct advantages, such as low loss, high spatial resolution and environmental friendliness. Various inverse design methods have been extensively investigated to efficiently design optical structures. However, the optimization method for the inverse design of structural color remains a formidable challenge. Traditional optimization approaches, such as genetic algorithms require time-consuming repetitions of structural simulations. Deep learning-assisted design necessitates prior simulations and large amounts of data, making it less efficient for systems with a small number of features. This study proposes a tensor completion algorithm capable of swiftly and accurately predicting missing datasets based on partially obtained datasets to assist in structural color design. Transforming the complex physical problem of structural color design into a spatial structure relationship problem linking geometric parameters and spectral data. The method utilizes tensor multilinear data analysis to effectively capture the complex relationships associated with geometric parameters and spectral data in higher-order data. Numerical and experimental results demonstrate that the algorithm exhibits high reliability in terms of speed and accuracy for diverse structures, datasets of varying sizes, and different materials, significantly enhancing design efficiency. The proposed algorithm offers a viable solution for inverse design problems involving complex physical systems, thereby introducing a novel approach to the design of photonic devices. Additionally, numerical experiments illustrate that the structural color of cruciform resonators with diamond can overcome the high loss issues observed in traditional dielectric materials within the blue wavelength region and enhance the corrosion resistance of the structure. We achieve a wide color gamut and a high-narrow reflection spectrum nearing 1 by this structure, and the theoretical analysis further verifies that diamond holds great promise in the realm of optics.

20.
Opt Express ; 31(11): 18555-18566, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381565

RESUMEN

Blindly increasing the channels of the mode (de)multiplexer on the single-layer chip can cause the device structure to be too complex to optimize. The three-dimensional (3D) mode division multiplexing (MDM) technology is a potential solution to extend the data capacity of the photonic integrated circuit by assembling the simple devices in the 3D space. In our work, we propose a 16 × 16 3D MDM system with a compact footprint of about 100 µm × 5.0 µm × 3.7 µm. It can realize 256 mode routes by converting the fundamental transverse electric (TE0) modes in arbitrary input waveguides into the expected modes in arbitrary output waveguides. To illustrate its mode-routing principle, the TE0 mode is launched in one of the sixteen input waveguides, and converted into corresponding modes in four output waveguides. The simulated results indicate that the ILs and CTs of the 16 × 16 3D MDM system are less than 3.5 dB and lower than -14.2 dB at 1550 nm, respectively. In principle, the 3D design architecture can be scaled to realize arbitrary network complexity levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA