RESUMEN
Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.
Asunto(s)
Hemípteros , Insecticidas , Receptores Nicotínicos , Animales , Receptores Nicotínicos/genética , Insecticidas/farmacología , Hemípteros/genética , Drosophila melanogaster , Neonicotinoides/farmacología , MutaciónRESUMEN
Bemisia tabaci (Hemiptera: Gennadius) is a notorious pest that is capable of feeding on >600 kinds of agricultural crops. Imidacloprid is critical in managing pest with sucking mouthparts, such as B. tabaci. However, the field population of B. tabaci has evolved resistance because of insecticide overuse. The overexpression of the detoxification enzyme cytochrome P450 monooxygenase is considered the main mechanism of imidacloprid resistance, but the mechanism underlying gene regulation remains unclear. MicroRNAs are a type of endogenous small molecule compounds that is fundamental in regulating gene expression at the post-transcriptional level. Whether miRNAs are related to the imidacloprid resistance of B. tabaci remains unknown. To gain deep insight into imidacloprid resistance, we conducted on miRNAs expression profiling of two B. tabaci Mediterranean (MED) strains with 19-fold resistance through deep sequencing of small RNAs. A total of 8 known and 1591 novel miRNAs were identified. In addition, 16 miRNAs showed significant difference in expression levels between the two strains, as verified by quantitative reverse transcription PCR. Among these, novel_miR-376, 1517, and 1136 significantly expressed at low levels in resistant samples, decreasing by 36.9%, 60.2%, and 15.6%, respectively. Moreover, modulating novel_miR-1517 expression by feeding with 1517 inhibitor and 1517 mimic significantly affected B. tabaci imidacloprid susceptibility by regulating CYP6CM1 expression. In this article, miRNAs related to imidacloprid resistance of B. tabaci were systematically screened and identified, providing important information for the miRNA-based technological innovation for this pest management.
Asunto(s)
Hemípteros , Insecticidas , MicroARNs , Animales , Hemípteros/metabolismo , Resistencia a los Insecticidas/genética , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , MicroARNs/genéticaRESUMEN
The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.
Asunto(s)
Hemípteros , Insecticidas , Animales , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Hemípteros/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Resistencia a los Insecticidas/genética , Uridina Difosfato/metabolismoRESUMEN
In this report, we describe the molecular characterization of two novel mycoviruses coinfecting the plant pathogenic fungus Nigrospora sphaerica, which were designated "Nigrospora sphaerica fusarivirus 1" (NsFV1) and "Nigrospora sphaerica partitivirus 1" (NsPV1). NsFV1 has an undivided genome measuring 6,147 nt, excluding the polyA tail, and was predicted to contain two nonoverlapping open reading frames (ORF1 and 2). The larger ORF1 encodes a polyprotein containing a conserved RNA-dependent RNA polymerase (RdRp) and a helicase domain that has functions related to RNA replication, and the smaller ORF2 encodes a putative protein with an unknown function. NsPV1 consists of two genome segments, which measure 1,796 bp and 1,455 bp in length. Each of the two dsRNAs has a single ORF, and they are predicted to encode proteins with homology to viral RdRps and coat proteins of members of the family Partitiviridae. Phylogenetic analysis indicated that NsFV1 is a member of the recently proposed family "Fusariviridae", while NsPV1 was determined to belong to the genus Gammapartitivirus in the family Partitiviridae. To the best of our knowledge, this report is the first to describe mycoviruses infecting N. sphaerica.
Asunto(s)
Ascomicetos/virología , Virus Fúngicos/clasificación , Secuenciación Completa del Genoma/métodos , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Tamaño del Genoma , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/microbiología , Homología de Secuencia de Ácido NucleicoRESUMEN
Microvascular damage is a key pathological change in myocardial ischemia/reperfusion (I/R) injury. Using a rat model of myocardial I/R, our current study has provided the first evidence that nicotinamide adenine dinucleotide (NAD+) administration can significantly attenuate myocardial I/R-induced microvascular damage, including reduced regional blood perfusion, decreased microvessel density and integrity, and coronary microvascular endothelial cells (CMECs) injury. In studies with primary cultured CMECs under hypoxia/reoxygenation (HR) and a rat model of I/R, our results suggested that the protective effect of NAD+ on CMECs exposed to HR or I/R is at least partially mediated by the NAD+-induced restoration of autophagic flux, especially lysosomal autophagy: NAD+ treatment markedly induced transcription factor EB (TFEB) activation and attenuated lysosomal dysfunction in the I/R or HR-exposed cells. Collectively, our study has provided the first in vivo and in vitro evidence that NAD+ significantly rescued the impaired autophagic flux and cell apoptosis that was induced by I/R in rat CMECs, which is mediated in part through the action of TFEB-mediated lysosomal autophagy.
Asunto(s)
Autofagia/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , NAD/uso terapéutico , Animales , Separación Celular , Evaluación Preclínica de Medicamentos , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Masculino , Microvasos/efectos de los fármacos , NAD/farmacología , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Barbarea vulgaris is a wild cruciferous plant and include two distinct types: the G- and P-types named after their glabrous and pubescent leaves, respectively. The types differ significantly in resistance to a range of insects and diseases as well as glucosinolates and other chemical defenses. A high-density linkage map was needed for further progress to be made in the molecular research of this plant. RESULTS: We performed restriction site-associated DNA sequencing (RAD-Seq) on an F2 population generated from G- and P-type B. vulgaris. A total of 1545 SNP markers were mapped and ordered in eight linkage groups, which represents the highest density linkage map to date for the crucifer tribe Cardamineae. A total of 722 previously published genome contigs (50.2 Mb, 30% of the total length) can be anchored to this high density genetic map, an improvement compared to a previously published map (431 anchored contigs, 38.7 Mb, 23% of the assembly genome). Most of these (572 contigs, 31.2 Mb) were newly anchored to the map, representing a significant improvement. On the basis of the present high-density genetic map, 37 QTL were detected for eleven traits, each QTL explaining 2.9-71.3% of the phenotype variation. QTL of glucosinolates, leaf size and color traits were in most cases overlapping, possibly implying a functional connection. CONCLUSIONS: This high-density linkage map and the QTL obtained in this study will be useful for further understanding of the genetic of the B. vulgaris and molecular basis of these traits, many of which are shared in the related crop watercress.
Asunto(s)
Barbarea/genética , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN/métodos , Barbarea/fisiología , ADN de Plantas/genética , Ligamiento Genético , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Polimorfismo de Nucleótido SimpleRESUMEN
Pathogen-mediated interactions between insect vectors and their host plants can affect herbivore fitness and the epidemiology of plant diseases. While the role of plant quality and defense in mediating these tripartite interactions has been recognized, there are many ecologically and economically important cases where the nature of the interaction has yet to be characterized. The Bemisia tabaci (Gennadius) cryptic species Mediterranean (MED) is an important vector of tomato yellow leaf curl virus (TYLCV), and performs better on virus-infected tomato than on uninfected controls. We assessed the impact of TYLCV infection on plant quality and defense, and the direct impact of TYLCV infection on MED feeding. We found that although TYLCV infection has a minimal direct impact on MED, the virus alters the nutritional content of leaf tissue and phloem sap in a manner beneficial to MED. TYLCV infection also suppresses herbivore-induced production of plant defensive enzymes and callose deposition. The strongly positive net effect on TYLCV on MED is consistent with previously reported patterns of whitefly behavior and performance, and provides a foundation for further exploration of the molecular mechanisms responsible for these effects and the evolutionary processes that shape them.
Asunto(s)
Begomovirus/fisiología , Hemípteros/fisiología , Interacciones Huésped-Patógeno , Insectos Vectores/fisiología , Solanum lycopersicum/virología , Animales , Femenino , Hemípteros/virología , Insectos Vectores/virologíaRESUMEN
The western flower thrips, Frankliniella occidentalis (Pergande), and the sweetpotato whitefly, Bemisia tabaci (Gennadius), are both invasive insect pests and are present in most of the same agricultural crops without a clear dominance of either species. Here, intra- and interspecific competition in B. tabaci and F. occidentalis was determined under controlled experiments. The results showed that intraspecific competition was distinct in F. occidentalis and that the co-occurrence of B. tabaci had a strong effect on F. occidentalis, resulting in a decrease in oviposition. Significant intraspecific competition was found in B. tabaci, and the coexistence of F. occidentalis had limited effect on the oviposition of B. tabaci. In a selective host plant preference experiment, both F. occidentalis and B. tabaci preferred eggplants most, followed by cucumbers and tomatoes. On cucumber plants, B. tabaci was predominant, whereas on eggplant and tomato plants, F. occidentalis and B. tabaci exhibited comparative competitive abilities during the initial stage. However, over time, higher numbers of B. tabaci than that of F. occidentalis were found on the two host plants. Our in vitro and potted plant experiments indicate that B. tabaci is competitively superior to F. occidentalis, which might help to explain their differential distribution patterns in China.
Asunto(s)
Hemípteros/fisiología , Thysanoptera/fisiología , Animales , Conducta Competitiva , Conducta Alimentaria , Femenino , Fertilidad , Cadena Alimentaria , Masculino , Oviposición , Densidad de Población , Especificidad de la EspecieRESUMEN
Though the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) was introduced into China more than 60 years ago, the genetic diversity and structure of this exotic insect pest and virus vector have not been studied. To investigate the population genetic characteristics of this invasive species and to identify potential invasion routes, the genetic diversity and population structure of 17 collections of T. vaporariorum from nine provinces in China were analyzed using seven microsatellite loci. The results of the analyses indicated that the genetic diversity for the populations examined from the four provinces: Jilin, Ningxia, Guizhou and Qinghai, was lower than the genetic diversity of populations from the five provinces: Yunnan, Shandong, Shanxi, Liaoning, and Gansu. The T. vaporariorum populations analyzed in this study grouped as two distinct genetic clusters based on the analysis using STRUCTURE, whereas, 8 clusters were identified based on the BAPS analysis. Of the 136 genetic distance (Fst) values, 128 (94%) were associated with a significant exact test. However, there was no significant relationship between Fst and geographical distance. These results demonstrate that populations of T. vaporariorum in China exhibit significant genetic differentiation, indicating the likelihood that multiple introductions of T. vaporariorum into China have occurred. Also, the populations collected from the provinces of Jilin, Ningxia, Guizhou and Qinghai appear to represent secondary introductions originating from other Chinese provinces.
Asunto(s)
Genética de Población , Hemípteros/genética , Américas , Animales , China , Análisis por Conglomerados , Sitios Genéticos , Variación Genética , Especies Introducidas , Repeticiones de Microsatélite/genéticaRESUMEN
The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14-17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64).
Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hemípteros/efectos de los fármacos , Hemípteros/metabolismo , Imidazoles/farmacología , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Nitrocompuestos/farmacología , Animales , China , Sistema Enzimático del Citocromo P-450/genética , Resistencia a Medicamentos , Hemípteros/genética , Proteínas de Insectos/genética , NeonicotinoidesRESUMEN
Communities of bacteria, especially symbionts, are vital for the growth and development of insects and other arthropods, including Bemisia tabaci Mediterranean (MED), a destructive and invasive insect pest. However, the infection density patterns and influence factors of bacteria in whiteflies, which mainly include symbionts, remain largely unclear. To reveal the different density patterns of Cardinium in B. tabaci MED populations and the impacts of high temperatures on whiteflies with different Cardinium density infection patterns, 2 isofemale lines isolated from B. tabaci MED from the same geographical population of China and from B. tabaci MED collected from other countries and locations were examined using several techniques and methods, including fluorescence in situ hybridization (FISH), quantitative real-time polymerase chain reaction (qPCR), 16S rRNA gene sequencing, and 2b-RAD sequencing. The results showed that there were 2 different infection density patterns of Cardinium in B. tabaci MED (including 1 high-density pattern and 1 low-density pattern). For whiteflies with low-density Cardinium, conventional PCR could not detect Cardinium, but the other techniques confirmed that there was a low level of Cardinium within hosts. High temperature significantly decreased the diversity of bacterial communities: the relative titer of Cardinium increased but the density of Rickettsia decreased in the isofemale line with high-density Cardinium. However, high temperature did not influence the diversity and symbiont density in the line with low-density Cardinium. Moreover, high temperature influenced the functions of bacterial communities in whiteflies with high-density Cardinium but did not affect the bacterial functions in whiteflies with low-density Cardinium. Our results provide novel insights into the complex associations between symbionts and host insects.
Asunto(s)
Hemípteros , Rickettsia , Animales , Hemípteros/genética , Calor , Hibridación Fluorescente in Situ , ARN Ribosómico 16S/genética , Simbiosis/genética , Bacteroidetes/genética , Insectos/genética , Rickettsia/fisiologíaRESUMEN
The sweet potato whitefly, Bemisia tabaci, (Gennadius) (Hemiptera:Aleyrodidae) is a global pest of crops. Neonicotinoids are efficient insecticides used for control of this pest. Insecticidal targets of neonicotinoids are insect nicotinic acetylcholine receptors (nAChRs). Here, we characterized and cloned the full length of the nAChR ß1 subunit (BTß1) in B. tabaci and confirmed the consistency of BTß1 in B. tabaci MEAM1 and MED. Expression levels of BTß1 in different developmental stages and body parts of adults were investigated and compared in B. tabaci MED. dsRNA was prepared to knock down BTß1 in adult B. tabaci and significantly decreases the susceptibility to five neonicotinoid insecticides, including imidacloprid, clothianidin, thiacloprid, nitenpyram, and dinotefuran. This study indicated BTß1 as a notable site influencing the susceptibility of B. tabaci to neonicotinoids.
Asunto(s)
Hemípteros , Insecticidas , Receptores Nicotínicos , Animales , Insecticidas/toxicidad , Insecticidas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Resistencia a los Insecticidas/genética , Neonicotinoides/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismoRESUMEN
Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes de Insecto , Hemípteros/genética , Insecticidas/farmacología , Nitrocompuestos/farmacología , Oxazinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Tiazoles/farmacología , Animales , Etiquetas de Secuencia Expresada , Hemípteros/efectos de los fármacos , Resistencia a los Insecticidas , Larva/efectos de los fármacos , Larva/genética , Masculino , Neonicotinoides , Óvulo/efectos de los fármacos , TiametoxamRESUMEN
The thermal tolerance of Bemisia tabaci MED, an invasive whitefly species with worldwide distribution, plays an important role in its ecological adaptation during the invasion process. Heat-shock proteins (HSPs) are closely related to heat resistance. In this study, 33 Hsps (BtaHsps) were identified based on sequenced genome of B. tabaci MED belonging to six HSP families, among which 22 Hsps were newly identified. The secondary structures of a further 22 BtaHsps were also predicted. The results of RT-qPCR showed that heat shock could affect the expression of 14 of the 22 Hsps newly identified in this study. Among them, the expression level of six Hsps increased under 42 °C treatment. As the unstudied gene, BtaHsp90A3 had the highest increase rate. Therefore, BtaHsp90A3 was chosen for the RNAi test, and silencing BtaHsp90A3 by RNAi decreased the survival rate of adult B. tabaci at 42 °C. The results indicated that only a few Hsps were involved in the thermal tolerance of host whitefly although many Hsps would response under heat stress. This study conducted a more in-depth and comprehensive identification that demonstrates the evolutionary relationship of BtaHsps and illustrates the response of BtaHsps under the influence of thermal stress in B. tabaci MED.
RESUMEN
BACKGROUD: Cardinium symbiont is a maternally inherited bacterial endosymbiont and widely spreads in arthropods including Bemisia tabaci (Hemiptera: Aleyrodidae). However, the potential role of Cardinium played in the biology of their hosts is largely unknown. In two genetic lines (i.e. LS and SG lines) of B. tabaci MED, collected from different locations in China, we tested the effects of Cardinium on the performance of the host whitefly under a constant high temperature (31 °C) using the age-stage two-sex life table method, and explored the genes influenced by Cardinium-infection by RNA-sequencing. RESULTS: We found that Cardinium did provide protection of B. tabaci against heat stress under 31 °C. However, there was a significant connection between Cardinium-infection and whitefly genetic backgrounds. Performance revealed that Cardinium infection can increase the longevity of both female and male adults and oviposition periods in both lines, but it also conferred benefits of fecundity and pre-adult period to LS line. Additionally, the population parameters such as intrinsic rate of increase (r), finite rate of increase (λ) and mean generation time (T) demonstrated that Cardinium infection conferred fitness benefits to LS line but not to SG line. Transcriptome analysis indicated that several genes related to homeostasis and metamorphosis such as ubiquitin-related genes were highly expressed in Cardinium-infected B. tabaci. CONCLUSION: The research provided the first evidence that Cardinium can increase the thermal tolerance of whitefly, which may be associated with host genetic background.
Asunto(s)
Hemípteros , Animales , Bacterias , Femenino , Fertilidad , Hemípteros/genética , Longevidad , Masculino , SimbiosisRESUMEN
RNA interference (RNAi) techniques have emerged as powerful tools that facilitate development of novel management strategies for insect pests, such as Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae), which is a major pest of solanaceous plants in Asia. In this study, the potential of oral delivery of in vitro-synthesized and bacterially expressed double-stranded H. vigintioctopunctata lesswright (lwr) gene (dsHvlwr) to manage of H. vigintioctopunctata was investigated. Our results showed that the gene Hvlwr had a 480-bp open reading frame and encoded a 160-amino acid protein. Hvlwr expression levels were greater in the fat body than other tissue types. Hvlwr silencing led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent, likely as a result of the number of hemocytes increasing with dsRNA concentration, but decreasing with time. Bacterially expressed dsHvlwr that was applied to leaf discs caused 88%, 66%, and 36% mortality in 1st instars, 3rd instars, and adults after 10, 10, and 14 d, respectively; when applied to living plants, there was greater mortality in 1st and 3rd instars, but there was no effect on adults. Furthermore, dsHvlwr led to improved plant protection against H. vigintioctopunctata. Our study shows an effective dietary RNAi response in H. vigintioctopunctata and that Hvlwr is a promising RNAi target gene for control of this pest species.
Asunto(s)
Escarabajos/fisiología , Control de Insectos/métodos , Proteínas de Insectos/genética , Interferencia de ARN , Animales , Escarabajos/genética , Escarabajos/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Pupa/crecimiento & desarrollo , Pupa/fisiologíaRESUMEN
The invasive pest whitefly (Bemisia tabaci) is a complex species, of which Middle East-Minor Asia 1 (MEAM1) and Mediterranean (MED) are the two most damaging members. Previous research showed that cabbage is frequently infested with MEAM1 but seldomly with MED, and this difference in performance is associated with glucosinolate (GS) content. Some insects can modify GS using glucosinolate sulfatase (SULF), the activity of which is regulated by sulfatase modifying factor 1 (SUMF1); therefore, to increase our understanding of different performances of MEAM1 and MED on cabbage plants, we identified and compared nine putative SULFs and one SUMF in MEAM1 and MED. We found that the lengths of two genes, BtSulf2 and BtSulf4, differed between MEAM1 and MED. The messenger RNA levels of BtSulf4 increased more than 20-fold after MEAM1 and MED adults were exposed to GS, but BtSulf2 expression was only induced by GS in MEAM1. Knockdown of BtSulf2 and BtSulf4 in MEAM1 resulted in a substantial increase in the mortality of GS-treated adults but not in MED. These results indicate that differences in BtSulf2 and BtSulf4 sequences and/or expression may explain why MEAM1 performs better than MED on cabbage. Our results provide a basis for future functional research on SULF and SUMF in B. tabaci.
Asunto(s)
Glucosinolatos , Hemípteros , Proteínas de Insectos/genética , Sulfatasas , Animales , Brassica , Hemípteros/enzimología , Hemípteros/genética , Medio Oriente , Sulfatasas/genéticaRESUMEN
The production of Chinese chives is reduced throughout China due to a root-feeding dipteran pest Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae), therefore deciphering the conditions influencing its growth and development are important in developing ecological control strategies. A study was conducted from 2014 to 2017 to determine the relationship between the abundance of B. odoriphaga and temperature (atmospheric and soil), soil water content, and atmospheric humidity in a Chinese chive field in Beijing City, China. Numbers of adults peaked in March and October to November and were lowest in July to August and December to next February; numbers of larvae were highest in December to next February and lowest in July to August. From 2014 to 2017, the numbers of adults and larvae were significantly correlated with monthly mean atmospheric temperatures and soil temperatures, but were not significantly correlated with monthly mean atmospheric relative humidity and soil water content. However, for both adults and larvae, numbers were significantly greater with high soil water contents compared with drought treatment. The results of this study suggest that the very low soil water contents, high atmospheric temperatures, and high soil temperatures were critical for regulating field populations of B. odoriphaga.
Asunto(s)
Dípteros , Insecticidas , Animales , China , Humedad , TemperaturaRESUMEN
MEAM1 (Middle East-Asia Minor 1, "B" biotype) and MED (Mediterranean, "Q" biotype) are the two most destructive cryptic species of the Bemisia tabaci complex on the planet. Our previous studies have shown that MEAM1 outcompetes MED on cabbage; the underlying mechanism is unknown. In the Brassicaceae family, the glucosinolate-myrosinase defense system plays a crucial role in deterring feeding, inhibiting growth, and causing acute toxicity against a wide range of generalist herbivores. In the present study, we first compared the survival of MEAM1 and MED exposed to sinigrin (a glucosinolate) and myrosinase (an enzyme that degrades glucosinolates); we found that survival of both species was high in response to sinigrin alone but was near zero in response to sinigrin + myrosinase. We then used electropenetrography (electrical penetration graphs, EPG) to assess the feeding behaviors of MEAM1 and MED whiteflies on cabbage. The EPG results revealed that the mean duration of each potential drop (pd, indicating an intracellular puncture) was substantially longer for MED than MEAM1 on cabbage, indicating that the exposure to the toxic hydrolysates of glucosinolate and myrosinase is greater for MED than for MEAM1. We therefore conclude that differences in penetrating behaviors may help explain the different effects of cabbage on MEAM1 and MED whitefly species.
Asunto(s)
Cadena Alimentaria , Glucosinolatos/farmacología , Glicósido Hidrolasas/farmacología , Hemípteros/fisiología , Herbivoria , Animales , Brassica/crecimiento & desarrollo , Electrofisiología , Conducta Alimentaria , Especificidad de la EspecieRESUMEN
We report an interesting case of coronary arteritis and periaortitis in a 62-year-old man with a history of biopsy-proven IgG4-related pulmonary disease. After 2 years of immune-suppressive therapy, the perivascular tissue surrounding all coronary arteries and the abdominal aorta was significantly attenuated, except that the luminal stenosis was aggravated to 70% in the left anterior descending coronary artery. Treatment with aspirin, atorvastatin, and ezetimibe was added. The patient was discharged under strict lesion surveillance at follow-up.