Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 49(5): 1150-1165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38296858

RESUMEN

Cannabis sativa has been used for improving sleep for long history. Cannabidiol (CBD) has drown much attention as a non-addictive psychoactive component in Cannabis sativa extract. However, the effects of CBD on sleep architecture and it's acting mechanism remains unclear. In the present study, we evaluated the sedative-hypnotic effect of cannabidiol (CBD), assessed the effects of CBD on sleep using a wireless physiological telemetry system. We further explored the therapeutic effects of CBD using 4-chloro-dl-phenylalanine (PCPA) induced insomnia model and changes in sleep latency, sleep duration and intestinal flora were evaluated. CBD shortened sleep latency and increases sleep duration in both normal and insomnia mice, and those effects were blocked by 5-HT1A receptor antagonist WAY100635. We determined that CBD increases 5-HT1A receptors expression and 5-HT content in the hypothalamus of PCPA-pretreated mice and affects tryptophan metabolism in the intestinal flora. These results showed that activation of 5-HT1A receptors is one of the potential mechanisms underlying the sedative-hypnotic effect of CBD. This study validated the effects of CBD on sleep and evaluated its potential therapeutic effects on insomnia.


Asunto(s)
Cannabidiol , Trastornos del Inicio y del Mantenimiento del Sueño , Ratones , Animales , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéutico , Serotonina/metabolismo , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Receptor de Serotonina 5-HT1A , Trastornos del Inicio y del Mantenimiento del Sueño/inducido químicamente , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Antagonistas de la Serotonina
2.
Neurochem Res ; 49(7): 1735-1750, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38530508

RESUMEN

The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1ß, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.


Asunto(s)
Ansiedad , Dieta Alta en Grasa , Microbioma Gastrointestinal , Grafito , Ratones Endogámicos C57BL , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Grafito/uso terapéutico , Grafito/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ansiedad/etiología , Ansiedad/metabolismo , Rayos Infrarrojos/uso terapéutico , Obesidad/metabolismo , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Ratones Obesos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 141-150, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403347

RESUMEN

This study established an HPLC fingerprint and multi-component content determination method for salt-fired Eucommiae Cortex, and evaluated the quality of salt-fired Eucommiae Cortex from different sources using fingerprint similarity evaluation, cluster analysis(CA), principal component analysis(PCA), and orthogonal partial least square discriminate analysis(OPLS-DA). HPLC was launched on a Cosmosil 5C_(18)-MS-Ⅱ column(4.6 mm×250 mm, 5 µm) by gradient elution with a mobile phase of methanol-0.2% phosphoric acid aqueous solution at a flow rate of 1.0 mL·min~(-1), detection wavelength of 238 nm, column temperature of 30 ℃, and an injection volume of 10 µL. The results of fingerprint similarity evaluation for 20 batches of salt-fired Eucommiae Cortex indicated that, except for batch S3 with a similarity of 0.893, the similarity of the other 19 batches was of ≥ 0.919, suggesting good similarity. Fourteen common peaks were calibrated and seven common peaks were identified including geniposidic acid. The mass fractions of geniposidic acid, chlorogenic acid, geniposide, genipin, pinoresinol diglucoside, liriodendrin, and pinoresinol-4-O-ß-D-glucopyranoside were 0.062 0%-0.426 9%, 0.024 9%-0.116 5%, 0.009 5%-0.052 9%, 0.005 5%-0.034 8%, 0.115 9%-0.317 8%, 0.016 4%-0.108 8%, and 0.026 4%-0.039 8%, respectively. Using CA, PCA, and OPLS-DA, the 20 batches of salt-fired Eucommiae Cortex were classified into three categories. Additionally, through the analysis of variable importance in projection(VIP) under OPLS-DA, two differential quality markers, geniposidic acid and chlorogenic acid, were identified. The established HPLC fingerprint and multi-component content determination method is stable and reliable, providing a reference for quality control of salt-fired Eucommiae Cortex.


Asunto(s)
Quimiometría , Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Glucósidos Iridoides/análisis , Cloruro de Sodio
4.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1611-1617, 2022 Mar.
Artículo en Zh | MEDLINE | ID: mdl-35347960

RESUMEN

This study aimed to investigate the effects of geniposide(GP) on the expression of prokineticin(PK2) and prokineticin receptor 1(PKR1) in db/db mice with diabetic nephropathy(DN), so as to explore how the PK2 signaling pathway participated in the pathological changes of DN and whether GP exerted the therapeutic effect through this signaling pathway. Male mice were randomly divided into four groups, namely db/m, db/db, db/db+GP, and db/m+GP groups, with five in each group. The mice in the db/db+GP and db/m+GP groups were gavaged with 150 mg·kg~(-1) GP for eight successive weeks. Afterwards, all the mice were sacrificed and the renal tissues were embedded. The morphological changes in glomerulus and renal tubules were observed by Masson and PAS staining. The expression levels of PK2, PKR1, and Wilm's Tumor Protein 1(WT_1) in podocytes were detected by immunohistochemistry, and the protein expression levels of PK2 and PKR1 in mouse kidney by Western blot. The morphological results showed serious glomerular and tubular fibrosis(Masson), high glomerular and tubular injury score(PAS), increased glomerular mesangial matrix, thickened basement membrane, exfoliated brush border of renal tubules, decreased WT_1 in glomerular podocytes, and massive loss of podocytes in the db/db group. After administration with GP, the glomerular and tubular fibrosis was alleviated, accompanied by improved glomerular basement membrane and renal tubule brush edge, and up-regulated WT_1. As revealed by further protein detection, in the db/db group, the expression levels of PK2 and PKR1 and p-Akt/Akt ratio declined, whereas the ratio of Bax/Bcl-2 rose. Ho-wever, PKR2 and p-ERK/ERK ratio did not change significantly. After administration with GP, the PK2 and PKR1 expression was elevated, and p-Akt/Akt ratio was increased. There was no obvious change in PKR2, Bax/Bcl-2 ratio, or p-ERK/ERK ratio. All these have demonstrated that GP improves the renal damage in DN mice, and PK2/PKR1 signaling pathway may be involved in such protection, which has provided reference for clinical treatment of DN with GP.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Iridoides , Riñón , Masculino , Ratones , Transducción de Señal
5.
Acta Pharmacol Sin ; 42(8): 1280-1287, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33536603

RESUMEN

Epithelial-mesenchymal transition (EMT) enables dissemination of neoplastic cells and onset of distal metastasis of primary tumors. However, the regulatory mechanisms of EMT by microenvironmental factors such as transforming growth factor-ß (TGF-ß) remain largely unresolved. Protein tyrosine phosphatase L1 (PTPL1) is a non-receptor protein tyrosine phosphatase that plays a suppressive role in tumorigenesis of diverse tissues. In this study we investigated the role of PTPL1/PTPN13 in metastasis of lung cancer and the signaling pathways regulated by PTPL1 in terms of EMT of non-small cell lung cancer (NSCLC) cells. We showed that the expression of PTPL1 was significantly downregulated in cancerous tissues of 23 patients with NSCLC compared with adjacent normal tissues. PTPL1 expression was positively correlated with overall survival of NSCLC patients. Then we treated A549 cells in vitro with TGF-ß1 (10 ng/mL) and assessed EMT. We found that knockdown of PTPL1 enhanced the migration and invasion capabilities of A549 cells, through enhancing TGF-ß1-induced EMT. In nude mice bearing A549 cell xenografts, knockdown of PTPL1 significantly promoted homing of cells and formation of tumor loci in the lungs. We further revealed that PTPL1 suppressed TGF-ß-induced EMT by counteracting the activation of canonical Smad2/3 and non-canonical p38 MAPK signaling pathways. Using immunoprecipitation assay we demonstrated that PTPL1 could bind to p38 MAPK, suggesting that p38 MAPK might be a direct substrate of PTPL1. In conclusion, these results unravel novel mechanisms underlying the regulation of TGF-ß signaling pathway, and have implications for prognostic assessment and targeted therapy of metastatic lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 13/metabolismo , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
J Cell Biochem ; 121(1): 371-384, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31218737

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is one of the common postoperative complications, which is more common in aged patients. POCD mainly manifests as cognitive function changes after surgery, such as memory decline and inattention. In some severe cases, patients may suffer from personality changes and (or) social behavior decline. The aim of the current study is to confirm the effect and elucidate the mechanism of bone marrow mesenchymal stem cells (BMSCs) in postoperative central inflammatory mice. METHODS: Mice were randomly assigned to four groups: sham, sham+BMSCs, model, and BMSCs group. In the model group, mice were intraperitoneally injected 8 mg/kg per day lipopolysaccharide for 5 days. In sham+BMSCs and BMSCs group, BMSCs (1 × 10 7 ) in 100 µL saline were injected into sham mice and model mice, respectively. RESULTS: In the model group, transforming growth factor ß (TGF-ß) protein expression was significantly increased, compared with that in the sham group. BMSCs were treated into postoperative central inflammatory mice, which resulted in a decreased of TGF-ß protein expression. TGF-ß and smad2 protein expression were suppressed, and apoptosis rate and inflammation were inhibited in coculture with BMSCs. The suppression of TGF-ß inhibited the effects of BMSCs on apoptosis rate and inflammation in postoperative central inflammatory through a smad2 signaling pathway. The promotion of TGF-ß reduced the effects of BMSCs on apoptosis rate and inflammation in postoperative central inflammatory through a smad2 signaling pathway. CONCLUSION: The present study demonstrates that BMSCs regulates TGF-ß to adjust neuroinflammation in postoperative central inflammatory mice.


Asunto(s)
Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Neuronas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Apoptosis , Conducta Animal , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Lipopolisacáridos/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Periodo Posoperatorio , Transducción de Señal , Proteína Smad2/metabolismo
7.
Acta Pharmacol Sin ; 41(8): 1102-1110, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32152438

RESUMEN

Endothelial-mesenchymal transition (EnMT) plays a pivotal role in various diseases, including pulmonary hypertension (PH), and transcription factors like Snail are key regulators of EnMT. In this study we investigated how these factors were regulated by PH risk factors (e.g. inflammation and hypoxia) in human umbilical vein endothelial cells (HUVECs). We showed that treatment with interleukin 1ß (IL-1ß) induced EnMT of HUVECs via activation of NF-κB/Snail pathway, which was further exacerbated by knockdown of protein tyrosine phosphatase L1 (PTPL1). We demonstrated that PTPL1 inhibited NF-κB/Snail through dephosphorylating and stabilizing IκBα. IL-1ß or hypoxia could downregulate PTPL1 expression in HUVECs. The deregulation of PTPL1/NF-κB signaling was validated in a monocrotaline-induced rat PH (MCT-PH) model and clinical PH specimens. Our findings provide novel insights into the regulatory mechanisms of EnMT, and have implications for identifying new therapeutic targets for clinical PH.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Interleucina-1beta/farmacología , Subunidad p50 de NF-kappa B/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 13/fisiología , Transducción de Señal/fisiología , Factores de Transcripción de la Familia Snail/metabolismo , Animales , Transdiferenciación Celular/fisiología , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Interleucina-1beta/metabolismo , Masculino , Monocrotalina , Inhibidor NF-kappaB alfa/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 13/genética , Ratas Sprague-Dawley
8.
Acta Pharmacol Sin ; 40(10): 1322-1333, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31316183

RESUMEN

Abnormal wound healing by pulmonary artery smooth muscle cells (PASMCs) promotes vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Increasing evidence shows that both the mammalian target of rapamycin complex 1 (mTORC1) and nuclear factor-kappa B (NF-κB) are involved in the development of HPH. In this study, we explored the crosstalk between mTORC1 and NF-κB in PASMCs cultured under hypoxic condition and in a rat model of hypoxia-induced pulmonary hypertension (HPH). We showed that hypoxia promoted wound healing of PASMCs, which was dose-dependently blocked by the mTORC1 inhibitor rapamycin (5-20 nM). In PASMCs, hypoxia activated mTORC1, which in turn promoted the phosphorylation of NF-κB. Molecular docking revealed that mTOR interacted with IκB kinases (IKKs) and that was validated by immunoprecipitation. In vitro kinase assays and mass spectrometry demonstrated that mTOR phosphorylated IKKα and IKKß separately. Inhibition of mTORC1 decreased the level of phosphorylated IKKα/ß, thus reducing the phosphorylation and transcriptional activity of NF-κB. Bioinformatics study revealed that dipeptidyl peptidase-4 (DPP4) was a target gene of NF-κB; DPP4 inhibitor, sitagliptin (10-500 µM) effectively inhibited the abnormal wound healing of PASMCs under hypoxic condition. In the rat model of HPH, we showed that NF-κB activation (at 3 weeks) was preceded by mTOR signaling activation (after 1 or 2 weeks) in lungs, and administration of sitagliptin (1-5 mg/kg every day, ig) produced preventive effects against the development of HPH. In conclusion, hypoxia activates the crosstalk between mTORC1 and NF-κB, and increased DPP4 expression in PASMCs that leads to vascular remodeling. Sitagliptin, a DPP4 inhibitor, exerts preventive effect against HPH.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Administración Oral , Animales , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Biología Computacional , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/administración & dosificación , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , FN-kappa B/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Fosfato de Sitagliptina/administración & dosificación , Fosfato de Sitagliptina/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Cicatrización de Heridas/efectos de los fármacos
9.
Metab Brain Dis ; 34(5): 1375-1384, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31236807

RESUMEN

Hypidone hydrochloride (YL-0919), is a novel structural antidepressant candidate as a triple selective serotonin re-uptake inhibitor (SSRI), 5-HT1A partial agonist and 5-HT6 agonist. Here, we investigated the rapid onset antidepressant-like effects of YL-0919 and the possible mechanism in rats exposed to a chronic unpredictable stress (CUS) paradigm. In the CUS rats, it was found that fluoxetine (FLX, 10 mg/kg) treatment exerted antidepressant actions on 20-22d, while YL-0919 or vilazodone (VLZ, a dual 5-HT1A partial agonist and SSRI) administrated once daily exerted faster antidepressant-like behaviors [4 days in the sucrose preference test (SPT) and 6 days in the novelty suppressed feeding test (NSF)]. Thereafter, the serum corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels were reversed by treatment with YL-0919 for 7 days. Furthermore, YL-0919 treatment for 5 days reversed the brain derived neurotrophic factor (BDNF)-mammalian target of rapamycin (mTOR) signaling and the key synaptic proteins, such as post-synaptic density (PSD95), GluR1 and presynaptic protein synapsin1. Meanwhile, the dendritic complexity of pyramidal neurons in prefrontal cortex (PFC) were also increased in the CUS rats. These data suggest that YL-0919 exerts a faster antidepressant-like effect on behaviors and this effect maybe at least partially mediated by the BDNF-mTOR signaling related dendritic complexity increase in the PFC.


Asunto(s)
Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Ingestión de Alimentos/efectos de los fármacos , Piperidinas/uso terapéutico , Piridonas/uso terapéutico , Animales , Antidepresivos/farmacología , Depresión/metabolismo , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Masculino , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Piridonas/farmacología , Ratas , Ratas Wistar , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Estrés Psicológico/metabolismo , Factores de Tiempo
10.
J Neuroinflammation ; 15(1): 176, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29879988

RESUMEN

BACKGROUND: Diabetic neuropathic pain (DNP) is a common and distressing complication in patients with diabetes, and the underlying mechanism remains unclear. Tricyclic antidepressants (TCAs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) are recommended as first-line drugs for DNP. Ammoxetine is a novel and potent SNRI that exhibited a strong analgesic effect on models of neuropathic pain, fibromyalgia-related pain, and inflammatory pain in our primary study. The present study was undertaken to investigate the chronic treatment properties of ammoxetine on DNP and the underlying mechanisms for its effects. METHODS: The rat model of DNP was established by a single streptozocin (STZ) injection (60 mg/kg). Two weeks after STZ injection, the DNP rats were treated with ammoxetine (2.5, 5, and 10 mg/kg/day) for 4 weeks. The mechanical allodynia and locomotor activity were assayed to evaluate the therapeutic effect of ammoxetine. In mechanism study, the activation of microglia, astrocytes, the protein levels of pro-inflammatory cytokines, the mitogen-activated protein kinases (MAPK), and NF-κB were evaluated. Also, microglia culture was used to assess the direct effects of ammoxetine on microglial activation and the signal transduction mechanism. RESULTS: Treatment with ammoxetine for 4 weeks significantly relieved the mechanical allodynia and ameliorated depressive-like behavior in DNP rats. In addition, DNP rats displayed increased activation of microglia in the spinal cord, but not astrocytes. Ammoxetine reduced the microglial activation, accumulation of pro-inflammatory cytokines, and activation of p38 and c-Jun N-terminal kinase (JNK) in the spinal cord of DNP rats. Furthermore, ammoxetine displayed anti-inflammatory effects upon challenge with LPS in BV-2 microglia cells. CONCLUSION: Our results suggest that ammoxetine may be an effective treatment for relieving DNP symptoms. Moreover, a reduction in microglial activation and pro-inflammatory release by inhibiting the p-p38 and p-JNK pathways is involved in the mechanism.


Asunto(s)
Benzodioxoles/uso terapéutico , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Microglía/efectos de los fármacos , Mielitis , Propilaminas/uso terapéutico , Animales , Benzodioxoles/química , Proteínas de Unión al Calcio/metabolismo , Línea Celular Transformada , Neuropatías Diabéticas/inducido químicamente , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Clorhidrato de Duloxetina/uso terapéutico , Conducta Exploratoria/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Hipoglucemiantes/química , Lipopolisacáridos/farmacología , Locomoción/efectos de los fármacos , Proteínas de Microfilamentos/metabolismo , Mielitis/tratamiento farmacológico , Mielitis/etiología , Mielitis/patología , Propilaminas/química , Ratas , Estreptozocina/toxicidad
11.
J Neuroinflammation ; 14(1): 17, 2017 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-28109286

RESUMEN

BACKGROUND: Considerable evidence has shown that neuroinflammation and oxidative stress play an important role in the pathophysiology of postoperative cognitive dysfunction (POCD) and other progressive neurodegenerative disorders. Increasing evidence suggests that acetaminophen (APAP) has unappreciated antioxidant and anti-inflammatory properties. However, the impact of APAP on the cognitive sequelae of inflammatory and oxidative stress is unknown. The objective of this study is to explore whether APAP could have neuroprotective effects on lipopolysaccharide (LPS)-induced cognitive impairment in mice. METHODS: A mouse model of LPS-induced cognitive impairment was established to evaluate the neuroprotective effects of APAP against LPS-induced cognitive impairment. Adult C57BL/6 mice were treated with APAP half an hour prior to intracerebroventricular microinjection of LPS and every day thereafter, until the end of the study period. The Morris water maze was used to assess cognitive function from postinjection days 1 to 3. Animal behavioural tests as well as pathological and biochemical assays were performed to evaluate LPS-induced hippocampal damage and the neuroprotective effect of APAP. RESULTS: Mice treated with LPS exhibited impaired performance in the Morris water maze without changing spontaneous locomotor activity, which was ameliorated by treatment with APAP. APAP suppressed the accumulation of pro-inflammatory cytokines and microglial activation induced by LPS in the hippocampus. In addition, APAP increased SOD activity, reduced MDA levels, modulated glycogen synthase kinase 3ß (GSK3ß) activity and elevated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Moreover, APAP significantly decreased the Bax/Bcl-2 ratio and neuron apoptosis in the hippocampus of LPS-treated mice. CONCLUSIONS: Our results suggest that APAP may possess a neuroprotective effect against LPS-induced cognitive impairment and inflammatory and oxidative stress via mechanisms involving its antioxidant and anti-inflammatory properties, as well as its ability to inhibit the mitochondrial permeability transition (MPT) pore and the subsequent apoptotic pathway.


Asunto(s)
Acetaminofén/farmacología , Antioxidantes/farmacología , Disfunción Cognitiva , Hipocampo/efectos de los fármacos , Animales , Disfunción Cognitiva/inducido químicamente , Lipopolisacáridos/toxicidad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
12.
J Pharmacol Sci ; 130(1): 1-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26318675

RESUMEN

Our previous study indicated that 071031B, a novel potential serotonin and norepinephrine reuptake inhibitor, showed robust antidepressant activity in multiple depression models, and could simultaneously inhibit 5-HT and NE reuptake in vitro. The present study was to evaluate the effects of 071031B on monoamine system in vivo, by using pharmacological models, including 5-HTP induced head-twitch test, yohimbine toxicity potentiation test, and reserpine induced hypothermia test, and determining monoamine transmitter levels in reserpine induced monoamine depletion model or chronic unpredictable stress (CUS) model. Results in pharmacological models indicated that acute administration of 071031B at 5-20 mg/kg significantly enhanced 5-HTP induced head-twitch behavior, potentiated yohimbine induced lethal rate, and reversed reserpine induced hypothermia. Further monoamine assays demonstrated that acute or chronic administration of 071031B at 10 or 20 mg/kg increased 5-HT and/or NE levels in various brain regions in reserpine or CUS induced monoamine depletion models, respectively, without effect on DA and its metabolites. Our results revealed that 071031B produces potent inhibition of 5-HT and NE reuptake in vivo.


Asunto(s)
Antidepresivos , Benzodioxoles/farmacología , Monoaminas Biogénicas/metabolismo , Norepinefrina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina , Serotonina/metabolismo , Tiofenos/farmacología , Animales , Benzodioxoles/administración & dosificación , Encéfalo/metabolismo , Hipotermia/inducido químicamente , Masculino , Ratones Endogámicos ICR , Ratas Sprague-Dawley , Reserpina , Tiofenos/administración & dosificación , Yohimbina/toxicidad
13.
Acta Pharmacol Sin ; 37(9): 1154-65, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27424654

RESUMEN

AIM: The selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitors (SNRIs) are commonly used for the treatment of neuropathic pain and fibromyalgia. Ammoxetine ((±)-3-(benzo[d] [1,3]dioxol-4-yloxy)-N-methyl-3-(thiophen-2-yl)propan-1-amine) has been identified as a novel potent SNRI. In this study, we evaluated the acute analgesic properties of ammoxetine in different animal models of pain, and examined the involvement of monoamines in its analgesic actions. METHODS: The analgesic effects of ammoxetine were assayed using models of acetic acid- and formalin-induced pain in mice, neuropathic pain induced by sciatic nerve injury (SNI), chronic constriction injury (CCI) and reserpine-induced fibromyalgia pain in rats. The contents of 5-HT and NE in brain regions of fibromyalgia rats were measured using HPLC-ECD. In all the experiments, duloxetine was used as a positive control drug. RESULTS: Oral administration of ammoxetine (0.625-10 mg/kg) or duloxetine (2.5-40 mg/kg) dose-dependently decreased the number of acetic acid-induced writhing and formalin-induced first phase and second phase paw licking time in mice. Oral administration of ammoxetine (2.5-10 mg/kg) or duloxetine (10 mg/kg) alleviated mechanical allodynia in SNI and CCI rats and thermal hyperalgesia in CCI rats. The antiallodynic effect of ammoxetine in CCI rats was abolished by pretreatment with para-chlorophenylalanine methyl ester hydrochloride (PCPA, a 5-HT synthesis inhibitor) or α-methyl-para-tyrosine methylester (AMPT, a catecholamine synthesis inhibitor). Oral administration of ammoxetine (30 mg/kg) or duloxetine (50 mg/kg) significantly attenuated tactile allodynia in rats with reserpine-induced fibromyalgia. In the fibromyalgia rats, administration of ammoxetine (10, 30 mg/kg) or duloxetine (30, 50 mg/kg) dose-dependently increased the levels of 5-HT and NE, and decreased the metabolite ratio of 5-HT (5-HIAA/5-HT) in the spinal cord, hypothalamus, thalamus and prefrontal cortex. CONCLUSION: Ammoxetine effectively alleviates inflammatory, continuous, neuropathic and fibromyalgia-related pain in animal models, which can be attributed to enhanced neurotransmission of 5-HT and NE in the descending inhibitory systems.


Asunto(s)
Analgésicos no Narcóticos/uso terapéutico , Benzodioxoles/uso terapéutico , Fibromialgia/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Umbral del Dolor/efectos de los fármacos , Propilaminas/uso terapéutico , Neuropatía Ciática/tratamiento farmacológico , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Analgésicos no Narcóticos/administración & dosificación , Animales , Benzodioxoles/administración & dosificación , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos , Estructura Molecular , Dimensión del Dolor , Propilaminas/administración & dosificación , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante , Inhibidores de Captación de Serotonina y Norepinefrina/administración & dosificación
14.
Phytother Res ; 30(12): 1937-1942, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27539187

RESUMEN

Yacon (Smallanthus sonchifolius), a traditional food in the Andean diet, is attracting global attention for its medicinal properties, which are mainly because of its high content of non-digestible oligosaccharides. The purpose of this study is to evaluate the antidepressant-like effects of inulin-type oligosaccharides extracted from yacon (YOs) in behavioral models of depression. Behavioral despair models in mice including the tail suspension test (TST) and the forced swimming test (FST) were used to determine the effects of acute YOs administration. The locomotor activity was also explored to eliminate any false-positive activity. In addition, to further investigate the antidepressant-like effects of subchronic YOs administration, the learned helplessness (LH) paradigm in rats was performed. The results demonstrated that YOs (25, 50, or 100 mg/kg, p.o.) treatment significantly reduced the immobility time in the mouse TST and FST in a U-shaped, dose-dependent manner, and showed no stimulatory effect on the locomotor activity. Furthermore, subchronic YOs (25, 50, or 100 mg/kg, p.o.) treatment significantly reversed the escape deficits in LH rats, including an increased number of escape failures and prolonged escape latency. These findings suggest that the inulin-type oligosaccharides extracted from yacon may be a prospective natural source for antidepressants. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Asteraceae/química , Trastorno Depresivo/tratamiento farmacológico , Inulina/farmacología , Oligosacáridos/farmacología , Animales , Antidepresivos/aislamiento & purificación , Antidepresivos/farmacología , Trastorno Depresivo/etiología , Modelos Animales de Enfermedad , Suspensión Trasera/métodos , Masculino , Ratones , Oligosacáridos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Estudios Prospectivos , Ratas , Ratas Sprague-Dawley
15.
Int J Neuropsychopharmacol ; 17(10): 1659-69, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24763106

RESUMEN

Recently, the translocator protein (18 kDa) (TSPO), previously called peripheral benzodiazepine receptor (PBR) and both the starting point and an important rate-limiting step in neurosteroidogenesis, has received increased attention in the pathophysiology of post-traumatic stress disorder (PTSD) because it affects the production of neurosteroids, reinforcing the hypothesis that selective TSPO ligands could potentially be used as anti-PTSD drugs. As expected, we showed that chronic treatment with YL-IPA08 [N-ethyl-N-(2-pyridinylmethyl)-2-(3,4-ichlorophenyl)-7-methylimidazo [1,2-a] pyridine-3-acetamide hydrochloride], a potent and selective TSPO ligand synthesized by our institute, caused significant suppression of enhanced anxiety and contextual fear induced in the inescapable electric foot-shock-induced mouse model of PTSD and the time-dependent sensitization (TDS) procedure. These effects were completely blocked by the TSPO antagonist PK11195. Furthermore, YL-IPA08 could increase the level of allopregnanolone in the prefrontal cortex and serum of post-TDS rats, and these effects were antagonized by PK11195. In summary, the findings from the current study showed that YL-IPA08, a potent and selective TSPO ligand, had a clear anti-PTSD-like effect, which might be partially mediated by binding to TSPO and the subsequent synthesis of allopregnanolone.


Asunto(s)
Ansiolíticos/uso terapéutico , Trastornos por Estrés Postraumático/tratamiento farmacológico , Análisis de Varianza , Animales , Ansiolíticos/química , Ansiolíticos/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electrochoque/efectos adversos , Reacción Cataléptica de Congelación/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Masculino , Ratones , Ratones Endogámicos ICR , Actividad Motora/efectos de los fármacos , Piridinas/farmacología , Piridinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Receptores de GABA/metabolismo , Sertralina/farmacología , Sertralina/uso terapéutico , Trastornos por Estrés Postraumático/etiología
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 493-498, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38660857

RESUMEN

OBJECTIVE: To investigate the relationship between clinical indicators of CRAB symptoms and antioxidant enzyme activity in patients with multiple myeloma (MM). METHODS: The activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in the bone marrow supernatants of 44 patients with MM and 12 patients with non-malignant hematological diseases was detected by colorimetric assay, and then the differences in the activity of antioxidant enzymes between the two groups were compared. Furthermore, the relationship between the activity of antioxidant enzymes in the MM group and the levels of serum calcium, serum creatinine (Scr), hemoglobin (Hb), alkaline phosphatase (ALP) as well as bone lesions were analyzed. RESULTS: The antioxidant enzyme activity was lower in MM patients compared with the control group (P < 0.05). When the concentrations of serum calcium and ALP were higher than the normal levels, Hb was lower than 85 g/L, and there were multiple bone lesions, the activity of CAT, SOD and GPX was significantly declined (P < 0.05); When the concentration of Scr≥177 µmol/L, the activity of GPX was significantly declined (P < 0.05). Regression analyses showed that CAT, SOD and GPX were negatively correlated with serum calcium (r =-0.538, r =-0.456, r =-0.431), Scr (r =-0.342, r =-0.384, r =-0.463), and ALP (r =-0.551, r =-0.572, r =-0.482). CONCLUSION: The activity of antioxidant enzymes, including CAT, SOD and GPX, were decreased in patients with MM and they were negatively correlated with some clinical indicators of CRAB symptoms (such as serum calcium, Scr, and ALP), which suggests that promoting the activity of antioxidant enzymes may be beneficial to treat the CRAB symptoms of the patients with MM.


Asunto(s)
Antioxidantes , Mieloma Múltiple , Humanos , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/metabolismo , Antioxidantes/metabolismo , Médula Ósea , Braquiuros , Calcio/sangre , Calcio/metabolismo , Catalasa/sangre , Catalasa/metabolismo , Creatinina/sangre , Glutatión Peroxidasa/sangre , Glutatión Peroxidasa/metabolismo , Mieloma Múltiple/sangre , Mieloma Múltiple/complicaciones , Mieloma Múltiple/enzimología , Mieloma Múltiple/metabolismo , Superóxido Dismutasa/sangre , Superóxido Dismutasa/metabolismo
17.
Sci Rep ; 14(1): 16314, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009692

RESUMEN

The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.


Asunto(s)
Glucosa , Grafito , Homeostasis , Rayos Infrarrojos , Condicionamiento Físico Animal , Animales , Ratones , Glucosa/metabolismo , Grafito/farmacología , Grafito/química , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Microbioma Gastrointestinal , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Hipertermia Inducida/métodos , Tolerancia al Ejercicio , Microbiota
18.
Phytomedicine ; 108: 154500, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36288650

RESUMEN

BACKGROUND: Insomnia is the most frequent sleep disorder worldwide and is a prominent risk factor for mental and physical health deterioration. The clinical application of common pharmacological treatments for insomnia is far from satisfactory due to their various adverse effects. In recent years, drugs developed from natural herbs have become potential alternative therapies for insomnia. Sishen Wan (SSW), a traditional Chinese medicine (TCM) used for centuries to treat diarrheal disease, consists of multiple neurologically active herbs with sleep-regulating potential that may have therapeutic effects on insomnia. However, its hypnotic and sleep-regulating effects have not been evaluated in clinical practice or laboratory experiments. PURPOSE: To investigate the anti-insomnia effects of SSW and explore its possible mechanisms using preclinical models. STUDY DESIGN AND METHODS: The sedative effect of the SSW formula was investigated using network pharmacology analysis that was validated using various pharmacological approaches, including the evaluation of locomotor activity (LMA), pentobarbital-induced sleep time, and electroencephalography/electromyogram (EEG/EMG)-based sleep profiling in normal rats. Several animal models of insomnia, including sleep deprivation, serotonin depletion, and cage-changing models, have been used to further assess the anti-insomnia effects of SSW. Furthermore, the potential underlying mechanisms of action of SSW were predicted using bioinformatics methods and verified using in vivo and in silico experiments. RESULTS: The results showed that SSW reduced LMA and prolonged pentobarbital-induced sleep time in a dose-dependent manner, which was consistent with the increase in non-rapid eye movement (NREM) sleep in normal rats, indicating a solid sedative effect. In animal models of insomnia, SSW alleviated sleep disturbance by increasing NREM sleep time, shortening NREM sleep latency, and inhibiting sleep fragmentation, suggesting a possible curative effect of SSW on insomnia. Finally, through functional enrichment analysis and in vivo and in silico experiments, 5-HT1A was identified as the key target of the anti-insomnia effect of SSW. Moreover, (S)-propranolol, nuciferine, zizyphusine, and N,N-dimethyl-5-methoxytryptamine may be the active compounds of SSW responsible for its anti-insomnia effect. CONCLUSION: This study extended the possible indication scope for SSW, which provides a potential therapeutic TCM that may be used for insomnia treatment, as well as a reference scheme for the discovery of novel indications of TCM.


Asunto(s)
Pentobarbital , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Ratas , Pentobarbital/farmacología , Farmacología en Red , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéutico , Serotonina
19.
Artículo en Inglés | MEDLINE | ID: mdl-23316258

RESUMEN

The dysregulation of the serotonergic system has long been recognized as an important factor underlying the pathophysiology of PTSD. To date, SSRIs have already been established as the firstline pharmacotherapeutic agents for treating acute and chronic PTSD. However, SSRIs largely have several disadvantages which limit their utility. Our previous study has also shown that administration of the total flavonoids, isolated from the extract of Xiaobuxin-Tang (XBXT, mild mind-easing decoction), comprising four Chinese medicines including Haematitum, Flos Inulae, Folium Phyllostachydis Henonis, and Semen Sojae Preparatum, exerted significant antidepressant-like effect in chronically mildly stressed rats, possibly mediated by serotonergic activation. Since the central serotonergic dysfunction is an important and well-known cause mediating the pathophysiology of trauma-related symptoms in PTSD, it is reasonable to predict that flavonoids may exert therapeutic effects on PTSD in animal models. Therefore, the present study aims to examine the effect of flavonoids in alleviating the enhanced anxiety and fear response induced in two PTSD animal models. Ser, an SSRI, was administered as a positive control. Furthermore, the changes of brain monoaminergic neurotransmitters after chronic flavonoids administration have also been assessed in SPS-treated rats.

20.
Exp Neurol ; 354: 114086, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35460759

RESUMEN

Postoperative sleep disorder frequently occurs in patients after surgery. Sleep disturbance aggravates pain, anxiety, and delirium, which is an important risk factor for poor recovery. Circadian rhythm disorder induced by general anesthesia plays important role in postoperative sleep disorders. A large number of clinical studies have shown that various forms and duration of general anesthesia can lead to postoperative sleep disorders. In this study, the effect of prolonged propofol anesthesia on biological rhythm was comprehensively evaluated by wireless physiological telemetry system, and the therapeutic effect of exogenous melatonin pretreatment was further investigated. The results showed that prolonged propofol anesthesia had significant impacts on the circadian rhythm of sleep, body temperature, locomotor activity and endogenous melatonin secretion within 24 h following anesthesia, resulting in diminished oscillation amplitude. In hypothalamus, the expression of circadian factor PER and CRY were inhibited by propofol, possibly through activation of CAMK-CREB signaling pathway. Post-translational factors GSK-3ß, SIRT1, AMPK were also involved in the regulation of circadian factors after propofol anesthesia. Melatonin pretreatment could restore circadian rhythm process by regulating circadian factor expression through post-translational modulation and prohibit the over-synthesis of melatonin in pineal gland. This study verified the effects of anesthetics on circadian rhythm and further evaluated the potential therapeutic effect of melatonin on postoperative circadian rhythm and sleep disorders.


Asunto(s)
Ritmo Circadiano , Melatonina , Propofol , Trastornos del Sueño-Vigilia , Animales , Ritmo Circadiano/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta , Humanos , Melatonina/farmacología , Propofol/farmacología , Ratas , Sueño , Trastornos del Sueño-Vigilia/inducido químicamente , Trastornos del Sueño-Vigilia/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA