Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 34(41)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37406621

RESUMEN

Passive radiative cooling involves the emission of thermal radiation into cold space and the reflection of solar radiation, which aims to cool and lower the temperature of objects. However, currently most radiative coolers have a white appearance which restricts their potential applications. We develop a coloured bilayer radiative cooling membrane using polyvinylidene fluoride/tetraethoxysilane (PVDF/TEOS) fibres, with incorporation of phase change materials (PCMs) and active dyes through a simple and large-area electrospinning process. In comparison to traditional emitters, PCM-incorporated colourful coolers provide energy storage capacity and colourful appearances. Our phase-transition-based colourful flexible film (PCFF) achieves a total solar reflectance of 0.81 and a mid-infrared (8-13µm) emissivity of 0.85 with superior mechanical strength and good hydrophobicity. We experimentally demonstrate that our PCFF can significantly reduce the temperature of objects exposed to direct sunlight, with a cooling effect of up to 9 °C compared to commercial fabrics of similar materials and colours. Our work provides a promising starting point for the design and manufacture of colourful and flexible thermal control films.

2.
Neurosci Lett ; 836: 137871, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857698

RESUMEN

Parkinson's disease (PD) entails the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc), leading to movement-related impairments. Accurate assessment of DA neuron health is vital for research applications. Manual analysis, however, is laborious and subjective. To address this, we introduce TrueTH, a user-friendly and robust pipeline for unbiased quantification of DA neurons. Existing deep learning tools for tyrosine hydroxylase-positive (TH+) neuron counting often lack accessibility or require advanced programming skills. TrueTH bridges this gap by offering an open-sourced and user-friendly solution for PD research. We demonstrate TrueTH's performance across various PD rodent models, showcasing its accuracy and ease of use. TrueTH exhibits remarkable resilience to staining variations and extreme conditions, accurately identifying TH+ neurons even in lightly stained images and distinguishing brain section fragments from neurons. Furthermore, the evaluation of our pipeline's performance in segmenting fluorescence images shows strong correlation with ground truth and outperforms existing models in accuracy. In summary, TrueTH offers a user-friendly interface and is pretrained with a diverse range of images, providing a practical solution for DA neuron quantification in Parkinson's disease research.

3.
Carbohydr Polym ; 303: 120470, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657849

RESUMEN

Parkinson's disease is a neurodegenerative disease that is characterized by the loss of dopaminergic neurons. Fucoidan, which has emerged as a neuroprotective agent, is a marine-origin sulfated polysaccharide enriched in brown algae and sea cucumbers. However, variations in structural characteristics exist among fucoidans derived from different sources, resulting in a wide spectrum of biological effects. It is urgent to find the fucoidan with the strongest neuroprotective effect, and the mechanism needs to be further explored. We isolated and purified four different fucoidan species with different chemical structures and found that Type II fucoidan from Fucus vesiculosus (FvF) significantly improved mitochondrial dysfunction, prevented neuronal apoptosis, reduced dopaminergic neuron loss, and improved motor deficits in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Further mechanistic investigation revealed that the ATP5F1a protein is a key target responsible for alleviating mitochondrial dysfunction of FvF to exert neuroprotective effects. This study highlights the favorable properties of FvF for neuroprotection, making FvF a promising candidate for the treatment of PD.


Asunto(s)
Fucus , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Ratones , Animales , Neuronas Dopaminérgicas , Fucus/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Mitocondrias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
Nanoscale Res Lett ; 13(1): 42, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29417243

RESUMEN

A one-step method which involves exfoliating graphite materials (GIMs) off into graphene materials (GEMs) in aqueous suspension of CL-20 and forming CL-20/graphene materials (CL-20/GEMs) composites by using ball milling is presented. The conversion of mixtures to composite form was monitored by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The impact sensitivities of CL-20/GEM composites were contrastively investigated. It turned out that the energetic nanoscale composites based on CL-20 and GEMs comprising few layers were accomplished. The loading capacity of graphene (reduced graphene oxide, rGO) is significantly less than that of graphene oxide (GO) in CL-20/GEM composites. The formation mechanism was proposed. Via this approach, energetic nanoscale composites based on CL-20 and GO comprised few layers were accomplished. The resulted CL-20/GEM composites displayed spherical structure with nanoscale, ε-form, equal thermal stabilities, and lower sensitivities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA