Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396278

RESUMEN

Wireless Sensor Networks (WSNs) are promising technologies for exploiting in harsh environments such as can be found in the nuclear industry. Nuclear storage facilities can be considered harsh environments in that, amongst other variables, they can be dark, congested, and have high gamma radiation levels, which preclude operator access. These conditions represent significant challenges to sensor reliability, data acquisition and communications, power supplies, and longevity. Installed monitoring of parameters such as temperature, pressure, radiation, humidity, and hydrogen content within a nuclear facility may offer significant advantages over current baseline measurement options. This paper explores Commercial Off-The-Shelf (COTS) components to comprise an installed Internet of Things (IoT)-based multipurpose monitoring system for a specific nuclear storage situation measuring hydrogen concentration and temperature. This work addresses two major challenges of developing an installed remote sensing monitor for a typical nuclear storage scenario to detect both hydrogen concentrations and temperature: (1) development of a compact, cost-effective, and robust multisensor system from COTS components, and (2) validation of the sensor system for detecting temperature and hydrogen gas release. The proof of concept system developed in this study not only demonstrates the cost reduction of regular monitoring but also enables intelligent data management through the IoT by using ThingSpeak in a harsh environment.

2.
Materials (Basel) ; 15(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36363442

RESUMEN

Structural health monitoring (SHM) plays a critical role in ensuring the safety of large-scale structures during their operational lifespan, such as pipelines, railways and buildings. In the last few years, radio frequency identification (RFID) combined with sensors has attracted increasing interest in SHM for the advantages of being low cost, passive and maintenance-free. Numerous scientific papers have demonstrated the great potential of RFID sensing technology in SHM, e.g., RFID vibration and crack sensing systems. Although considerable progress has been made in RFID-based SHM, there are still numerous scientific challenges to be addressed, for example, multi-parameters detection and the low sampling rate of RFID sensing systems. This paper aims to promote the application of SHM based on RFID from laboratory testing or modelling to large-scale realistic structures. First, based on the analysis of the fundamentals of the RFID sensing system, various topologies that transform RFID into passive wireless sensors are analyzed with their working mechanism and novel applications in SHM. Then, the technical challenges and solutions are summarized based on the in-depth analysis. Lastly, future directions about printable flexible sensor tags and structural health prognostics are suggested. The detailed discussion will be instructive to promote the application of RFID in SHM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA