Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; : e2403271, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039981

RESUMEN

2D transition metal carbides and nitrides, i.e., MXene, are recently attracting wide attentions and presenting competitive performances as adsorbents used in hemoperfusion. Nonetheless, the nonporous texture and easily restacking feature limit the efficient adsorption of toxin molecules inside MXene and between layers. To circumvent this concern, here a plerogyra sinuosa biomimetic porous titanium carbide MXene (P-Ti3C2) is reported. The hollow and hierarchically porous structure with large surface area benefits the maximum access of toxins as well as trapping them inside the spherical cavity. The cambered surface of P-Ti3C2 prevents layers restacking, thus affording better interlaminar adsorption. In addition to enhanced toxin removal ability, the P-Ti3C2 is found to selectively adsorb more middle and large toxin molecules than small toxin molecules. It possibly originates from the rich Ti-deficient vacancies in the P-MXene lattice that increases the affinity with middle/large toxin molecules. Also, the vacancies as active sites facilitate the production of reactive oxygen under NIR irradiation to promote the photodynamic antibacterial performance. Then, the versatility of P-MXene is validated by extension to niobium carbide (P-Nb2C). And the simulated hemoperfusion proves the practicability of the P-MXene as polymeric adhesives-free adsorbents to eliminate the broad-spectrum toxins.

2.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38687279

RESUMEN

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Asunto(s)
Resinas Acrílicas , Aterosclerosis , Sulfatos de Condroitina , Lipoproteínas LDL , Rosiglitazona , Animales , Ratones , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/aislamiento & purificación , Sulfatos de Condroitina/química , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Resinas Acrílicas/química , Rosiglitazona/farmacología , Rosiglitazona/química , Adsorción , Células RAW 264.7 , Microesferas , Ciclodextrinas/química
3.
Angew Chem Int Ed Engl ; 63(35): e202406427, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38837308

RESUMEN

Tuning the interfacial structure of metal oxide substrates is an essential strategy to induce electronic structure reconstruction of supported catalysts, which is of great importance in optimizing their catalytic activities. Herein, vanadium oxides-supported Ir catalysts (Ir-V2O3, Ir-VO2, and Ir-V2O5) with different interfacial bonding environments (Ir-V, Ir-Obri, and Ir-O, respectively) were investigated for hydrogen evolution reaction (HER). The regulating mechanism of the influence of different interfacial bonding environments on HER activity was investigated by both experimental results and computational evidence. Benefiting from the unique advantages of interfacial Ir-V direct metal bonds in Ir-V2O3, including enhanced electron transfer and electron donation ability, an optimized HER performance can be obtained with lowest overpotentials of 16 and 26 mV at 10 mA cm-2, high mass activities of 11.24 and 6.66 A mg-1, and turnover frequency values of 11.20 and 6.63 s-1, in acidic and alkaline conditions respectively. Furthermore, the assembled Ir-V2O3||RuO2 anion exchange membrane (AEM) electrolyzer requires only 1.92 V to achieve a high current density of 500 mA cm-2 and realizes long-term stability. This study provides essential insights into the regulating mechanism of interfacial chemical bonding in electrocatalysts and offers a new pathway to design noble metal catalysts for different applications.

4.
J Mater Chem B ; 12(15): 3594-3613, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38506127

RESUMEN

Blood purification, such as hemodialysis (HD), plasma exchange (PE), and hemoperfusion (HP), is widely applied in patients with organ failure (such as kidney and liver failure). Among them, HP mainly relies on porous adsorbents to efficiently adsorb accumulated metabolic wastes and toxins, thus improving purification efficiency. Metal-organic frameworks (MOFs), with a high porosity, large surface area, high loading capacity, and tailorable topology, are emerging as some of the most promising materials for HP. Compared with non-metal framework counterparts, the self-built metal centers of MOFs feature the intrinsic advantages of coordination with toxin molecules. However, research on MOFs in blood purification is insufficient, particularly in contrast to materials applied in other biomedical applications. Thus, to broaden this area, this review first discusses the essential characteristics, potential mechanisms, and structure-function relationship between MOFs and toxin adsorption based on porosity, topology, ligand functionalization, metal centers, and toxin types. Moreover, the stability, utilization safety, and hemocompatibility of MOFs are illustrated for adsorbent selection. The current development and progress in MOF composites for HD, HP, and extracorporeal membrane oxygenation (ECMO) are also summarized to highlight their practicability. Finally, we propose future opportunities and challenges from materials design and manufacture to the computational prediction of MOFs in blood purification. It is anticipated that our review will expand the interest of researchers for more impact in this area.


Asunto(s)
Hemoperfusión , Estructuras Metalorgánicas , Humanos , Adsorción , Riñón , Porosidad
5.
J Mater Chem B ; 12(9): 2364-2372, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38345129

RESUMEN

The introduction of carbonic anhydrase (CA) onto an extracorporeal membrane oxygenation (ECMO) membrane can improve the permeability of carbon dioxide (CO2). However, existing CA-grafting methods have limitations, and the hemocompatibility of current substrate membranes of commercial ECMO is not satisfactory. In this study, a 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)/N-hydroxy succinimide (NHS) activation method is adopted to graft CA with CO2-catalyzed conversion activity onto a polyethersulfone (PES) membrane, which is prepared by a phase inversion technique after in situ crosslinking polymerization of 1-vinyl-2-pyrrolidone (VP) and acrylic acid (AA) in PES solution. The characterization results reveal that CA has been grafted onto the modified PES membrane successfully and exhibits catalytic activity. The kinetic parameters of esterase activity verify that the grafted amount of active CA increases with an increase in the concentration of the CA incubation solution. The CA-grafted membrane (CA-M) can accelerate the conversion of bicarbonate to CO2 in water and blood, which demonstrates the special catalytic activity towards bicarbonate of CA. Finally, blood compatibility tests prove that the CA-M does not lead to hemolysis, shows suppressed protein adsorption and increased coagulation time, and is suitable for application in ECMO. This work demonstrates a green and efficient method for preparing bioactive materials and has practical guiding significance for subsequent pulmonary membrane research and ECMO applications.


Asunto(s)
Anhidrasas Carbónicas , Polímeros , Sulfonas , Anhidrasas Carbónicas/metabolismo , Dióxido de Carbono , Bicarbonatos , Membranas Artificiales , Pulmón/metabolismo
6.
Adv Healthc Mater ; 13(14): e2400089, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38354105

RESUMEN

Oral wound treatment faces challenges due to the complex oral environment, thus, sealing the wound quickly becomes necessary. Although some materials have achieved adhesion and sterilization, how to effectively solve the contradiction between strong adhesion and on-demand removal remains a challenge. Herein, a reversibly adhesive hydrogel is designed by free radical copolymerization of cationic monomer [2-(acryloyloxy) ethyl] trimethylammonium chloride (ATAC), hydrophobic monomer ethylene glycol phenyl ether acrylate (PEA) and N-isopropylacrylamide (NIPAAm). The cationic quaternary ammonium salts provide electrostatic interactions, the hydrophobic groups provide hydrophobic interactions, and the PNIPAAm chain segments provide hydrogen bonding, leading to strong adhesion. Therefore, the hydrogel obtains an adhesion strength of 18.67 KPa to oral mucosa and can seal wounds fast within 10 s. Furthermore, unlike pure PNIPAAm, the hydrogel has a lower critical solution temperature of 40.3 °C due to the contribution of ATAC and PEA, enabling rapid removal with 40 °C water after treatment. In addition, the hydrogel realizes excellent anti-swelling ratio (≈80%) and antibacterial efficiency (over 90%). Animal experiments prove that the hydrogel effectively reduces inflammation infiltration, promotes collagen deposition and vascular regeneration. Thus, hydrogel as a multi-functional dressing has great application prospects in oral wound management.


Asunto(s)
Antibacterianos , Hidrogeles , Cicatrización de Heridas , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Adhesivos/química , Adhesivos/farmacología , Ratones , Ratas
7.
Adv Healthc Mater ; : e2400993, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850126

RESUMEN

Ideal hemostatic materials for the emergency rescue of war and traffic accident sufferers are essential to significantly control hemorrhage, reduce patient discomfort, and improve the survival ratio. However, most hemostats absorb blood quickly in contact with the wound; and then, adhere to blood clots, resulting in breaking scabs and tearing the wound when the materials are removed. Herein, an effective Janus amphipathic hemostatic dressing (Fiber@Gel/Ca2+/KL) with a fiber layer (polylactic acid/carboxymethyl chitosan) and a hydrogel layer (polyvinyl alcohol, carboxymethyl chitosan, Ca2+, and kaolin) is reported. Such a composite dressing unidirectionally drains the excessive serum from its hydrophobic side (fiber layer) to its hydrophilic side (hydrogel layer), so-called self-pumping, thereby further concentrating coagulated factors (including red blood cells and platelets). Further, Ca2+ diffused from the hydrogel layer subsequently activates platelets and coagulation cascade. Besides, the Fiber@Gel/Ca2+/KL exhibits specific blood-clot anti-adhesion property on the fiber layer, making the dressing easily and safely peel off from the wound. It is believed that this novel hemostatic dressing with good hemostatic performance, easy clots removal, and excellent biocompatibility is expected to be used as a safe and efficient hemostatic dressing in clinical applications.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38682663

RESUMEN

Sepsis is a systemic inflammatory response syndrome caused by pathogen infection, while the current antibiotics mainly utilized in clinical practice to combat infection result in the release of pathogen-associated molecular patterns (PAMPs) in the body. Herein, we provide an innovative strategy for controlling sepsis, namely, capturing active pathogens by means of extracorporeal blood purification. Carbon nanotubes (CNTs) were modified with dimethyldiallylammonium chloride (DDA) through γ-ray irradiation-induced graft polymerization to confer a positive charge. Then, CNT-DDAs are blended with polyurethane (PU) to prepare porous microspheres using the electro-spraying method. The obtained microspheres with a pore diameter of 2 µm served as pathogen traps and are termed as PU-CNT-DDA microspheres. Even at a high flow rate of 50 mL·min-1, the capture efficiencies of the PU-CNT-DDAs for Escherichia coli and Staphylococcus aureus remained 94.7% and 98.8%, respectively. This approach circumvents pathogen lysis and mortality, significantly curtails the release of PAMPs, and hampers the production of pro-inflammatory cytokines. Therefore, hemoperfusion using porous PU-CNT-DDAs as pathogen traps to capture active pathogens and alleviate inflammation opens a new route for sepsis therapy.

9.
Adv Sci (Weinh) ; : e2404652, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120461

RESUMEN

The massive accumulation of exudate containing high concentrations of glucose causes wound infection and triggers the release of inflammatory factors, which in turn delays the closure of diabetic wounds. In this study, a Janus membrane is constructed by combining glucose oxidase (GOx) and copper ions (Cu2+) for the treatment of diabetic wounds, which is named as Janus@GOx/Cu2+. It consists of hydrophobic, transitional, and superhydrophilic layers in a three-layer structure with gradient hydrophilicity for self-pumping properties. The Janus@GOx/Cu2+ membrane triggers a series of cascading reactions while pumping out diabetic wound exudates. First, glucose oxidase loaded onto the hydrophilic layer of the Janus@GOx/Cu2+ membrane decomposes glucose into hydrogen peroxide (H2O2) and glucuronic acid, reducing the local glucose level. The generated glucuronic acid neutralizes the local alkaline environment of chronic wounds. Simultaneously, the H2O2 interacts with the Cu2+ contained in the hydrophobic layers of the Janus@GOx/Cu2+ membrane via a Fenton-like reaction, generating hydroxyl radicals with excellent bactericidal properties. Cu2+ promotes angiogenesis and wound healing in diabetic wounds. Under the action of multiple responses, the Janus@GOx/Cu2+ membrane promotes wound healing in diabetic infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA