Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 627(8003): 313-320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480964

RESUMEN

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Asunto(s)
Diseño de Equipo , Piel , Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Humanos , Silicio , Nanotubos de Carbono , Tacto
3.
Opt Lett ; 49(15): 4282-4285, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090914

RESUMEN

In this Letter, we demonstrate a micro-displacement sensor based on a balloon-shaped fiber surface nanoscale axial photonic (SNAP) microresonator. The SNAP microresonator is fabricated by fiber bending to introduce nanoscale effective radius variations (ERVs) on the fiber surface. Displacement measurement based on the balloon-shaped SNAP microresonator is realized based on the ERV modulation resulting from the change in the bending radius of the balloon-shaped structure. An advantage of this approach is that the displacement measurement range is not limited to the axial length of the SNAP region. The experimental results show that the displacement measurement range of the balloon-shaped fiber SNAP microresonator can reach 2500 µm and that the minimum measurement resolution is 0.1 µm. This large-range, high-resolution, and low-cost micro-displacement sensor has the potential to be a promising candidate in high-precision displacement measurement applications.

4.
Opt Lett ; 48(6): 1498-1501, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946962

RESUMEN

In this Letter, we demonstrate a high-sensitivity vector bend sensor based on a fiber directional coupler. The fiber directional coupler is composed of two parallel waveguides inscribed within a no-core fiber (NCF) by a femtosecond laser. Since the two written waveguides have closely matched refractive indices and geometries, the transmission spectrum of the fiber directional coupler possesses periodic resonant dips. Such a fiber directional coupler exhibits a good bending-dependent spectral shift response due to its asymmetric structure. Experimental results show that bending sensitivities of -97.11 nm/m-1 and 58.22 nm/m-1 are achieved for the 0° and 180° orientations in the curvature range of 0-0.62 m-1, respectively. In addition, the proposed fiber directional coupler is shown to be insensitive to external humidity changes, thus improving its suitability in high-accuracy bending measurements.

5.
Nano Lett ; 20(3): 1747-1754, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32027140

RESUMEN

Plasmonic nanostructures have a wide range of applications, including chemical and biological sensing. However, the development of techniques to fabricate submicrometer-sized plasmonic structures over large scales remains challenging. We demonstrate a high-throughput, cost-effective approach to fabricate Au nanoribbons via chemical lift-off lithography (CLL). Commercial HD-DVDs were used as large-area templates for CLL. Transparent glass slides were coated with Au/Ti films and functionalized with self-assembled alkanethiolate monolayers. Monolayers were patterned with lines via CLL. The lifted-off, exposed regions of underlying Au were selectively etched into large-area grating-like patterns (200 nm line width; 400 nm pitch; 60 nm height). After removal of the remaining monolayers, a thin In2O3 layer was deposited and the resulting gratings were used as plasmonic sensors. Distinct features in the extinction spectra varied in their responses to refractive index changes in the solution environment with a maximum bulk sensitivity of ∼510 nm/refractive index unit. Sensitivity to local refractive index changes in the near-field was also achieved, as evidenced by real-time tracking of lipid vesicle or protein adsorption. These findings show how CLL provides a simple and economical means to pattern large-area plasmonic nanostructures for applications in optoelectronics and sensing.


Asunto(s)
Oro/química , Indio/química , Nanopartículas del Metal/química , Nanotubos de Carbono/química , Resonancia por Plasmón de Superficie
6.
J Am Chem Soc ; 141(9): 3863-3874, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30734553

RESUMEN

Spin selectivity in photo-emission from ferromagnetic substrates functionalized with chiral organic films was analyzed by ultraviolet photoelectron spectroscopy at room temperature. Using radiation with photon energy greater than the ionization potential of the adsorbed molecules, photoelectrons were collected that originated from both underlying ferromagnetic substrates and the organic films, with kinetic energies in the range of ca. 0-18 eV. We investigated chiral organic films composed of self-assembled monolayers of α-helical peptides and electrostatically adsorbed films of the protein, bovine serum albumin, with different α-helix and ß-sheet contents. Ultraviolet photoelectron spectral widths were found to depend on substrate magnetization orientation and polarization, which we attribute to helicity-dependent molecular ionization cross sections arising from photoelectron impact, possibly resulting in spin-polarized holes. These interactions between spin-polarized photoelectrons and chiral molecules are physically manifested as differences in the measured photoionization energies of the chiral molecular films. Substrate magnetization-dependent ionization energies and work function values were deconvoluted using surface charge neutralization techniques, permitting the measurement of relative spin-dependent energy barriers to transmission through chiral organic films.


Asunto(s)
Nanopartículas de Magnetita/química , Péptidos/química , Adsorción , Cinética , Tamaño de la Partícula , Espectrofotometría Ultravioleta
7.
Small ; 15(15): e1900300, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30884183

RESUMEN

Cells secrete substances that are essential to the understanding of numerous immunological phenomena and are extensively used in clinical diagnoses. Countless techniques for screening of biomarker secretion in living cells have generated valuable information on cell function and physiology, but low volume and real-time analysis is a bottleneck for a range of approaches. Here, a simple, highly sensitive assay using a high-throughput micropillar and microwell array chip (MIMIC) platform is presented for monitoring of biomarkers secreted by cancer cells. The sensing element is a micropillar array that uses the enzyme-linked immunosorbent assay (ELISA) mechanism to detect captured biomolecules. When integrated with a microwell array where few cells are localized, interleukin 8 (IL-8) secretion can be monitored with nanoliter volume using multiple micropillar arrays. The trend of cell secretions measured using MIMICs matches the results from conventional ELISA well while it requires orders of magnitude less cells and volumes. Moreover, the proposed MIMIC is examined to be used as a drug screening platform by delivering drugs using micropillar arrays in combination with a microfluidic system and then detecting biomolecules from cells as exposed to drugs.


Asunto(s)
Biomarcadores/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Microtecnología/métodos , Animales , Anticuerpos/análisis , Recuento de Células , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Humanos , Ratones
8.
Nano Lett ; 18(9): 5590-5595, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30060654

RESUMEN

Nanoribbon- and nanowire-based field-effect transistors (FETs) have attracted significant attention due to their high surface-to-volume ratios, which make them effective as chemical and biological sensors. However, the conventional nanofabrication of these devices is challenging and costly, posing a major barrier to widespread use. We report a high-throughput approach for producing arrays of ultrathin (∼3 nm) In2O3 nanoribbon FETs at the wafer scale. Uniform films of semiconducting In2O3 were prepared on Si/SiO2 surfaces via a sol-gel process prior to depositing Au/Ti metal layers. Commercially available high-definition digital versatile discs were employed as low-cost, large-area templates to prepare polymeric stamps for chemical lift-off lithography, which selectively removed molecules from self-assembled monolayers functionalizing the outermost Au surfaces. Nanoscale chemical patterns, consisting of one-dimensional lines (200 nm wide and 400 nm pitch) extending over centimeter length scales, were etched into the metal layers using the remaining monolayer regions as resists. Subsequent etch processes transferred the patterns into the underlying In2O3 films before the removal of the protective organic and metal coatings, revealing large-area nanoribbon arrays. We employed nanoribbons in semiconducting FET channels, achieving current on-to-off ratios over 107 and carrier mobilities up to 13.7 cm2 V-1 s-1. Nanofabricated structures, such as In2O3 nanoribbons and others, will be useful in nanoelectronics and biosensors. The technique demonstrated here will enable these applications and expand low-cost, large-area patterning strategies to enable a variety of materials and design geometries in nanoelectronics.


Asunto(s)
Indio/química , Nanotecnología/métodos , Nanotubos de Carbono/química , Semiconductores , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Oro/química , Nanotecnología/economía , Nanotecnología/instrumentación , Nanotubos de Carbono/ultraestructura , Dióxido de Silicio/química , Titanio/química
9.
Nano Lett ; 17(8): 5035-5042, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28737930

RESUMEN

We report a facile, high-throughput soft lithography process that utilizes nanoscale channels formed naturally at the edges of microscale relief features on soft, elastomeric stamps. Upon contact with self-assembled monolayer (SAM) functionalized substrates, the roof of the stamp collapses, resulting in the selective removal of SAM molecules via a chemical lift-off process. With this technique, which we call self-collapse lithography (SCL), sub-30 nm patterns were achieved readily using masters with microscale features prepared by conventional photolithography. The feature sizes of the chemical patterns can be varied continuously from ∼2 µm to below 30 nm by decreasing stamp relief heights from 1 µm to 50 nm. Likewise, for fixed relief heights, reducing the stamp Young's modulus from ∼2.0 to ∼0.8 MPa resulted in shrinking the features of resulting patterns from ∼400 to ∼100 nm. The self-collapse mechanism was studied using finite element simulation methods to model the competition between adhesion and restoring stresses during patterning. These results correlate well with the experimental data and reveal the relationship between the line widths, channel heights, and Young's moduli of the stamps. In addition, SCL was applied to pattern two-dimensional arrays of circles and squares. These chemical patterns served as resists during etching processes to transfer patterns to the underlying materials (e.g., gold nanostructures). This work provides new insights into the natural propensity of elastomeric stamps to self-collapse and demonstrates a means of exploiting this behavior to achieve patterning via nanoscale chemical lift-off lithography.

10.
Nano Lett ; 17(5): 3302-3311, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28409640

RESUMEN

We designed and fabricated large arrays of polymer pens having sub-20 nm tips to perform chemical lift-off lithography (CLL). As such, we developed a hybrid patterning strategy called polymer-pen chemical lift-off lithography (PPCLL). We demonstrated PPCLL patterning using pyramidal and v-shaped polymer-pen arrays. Associated simulations revealed a nanometer-scale quadratic relationship between contact line widths of the polymer pens and two other variables: polymer-pen base line widths and vertical compression distances. We devised a stamp support system consisting of interspersed arrays of flat-tipped polymer pens that are taller than all other sharp-tipped polymer pens. These supports partially or fully offset stamp weights thereby also serving as a leveling system. We investigated a series of v-shaped polymer pens with known height differences to control relative vertical positions of each polymer pen precisely at the sub-20 nm scale mimicking a high-precision scanning stage. In doing so, we obtained linear-array patterns of alkanethiols with sub-50 nm to sub-500 nm line widths and minimum sub-20 nm line width tunable increments. The CLL pattern line widths were in agreement with those predicted by simulations. Our results suggest that through informed design of a stamp support system and tuning of polymer-pen base widths, throughput can be increased by eliminating the need for a scanning stage system in PPCLL without sacrificing precision. To demonstrate functional microarrays patterned by PPCLL, we inserted probe DNA into PPCLL patterns and observed hybridization by complementary target sequences.

11.
Adv Funct Mater ; 26(2): 267-276, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27441036

RESUMEN

The rapid development of fluorescence imaging technologies requires concurrent improvements in the performance of fluorescent probes. Quantum dots have been extensively used as an imaging probe in various research areas because of their inherent advantages based on unique optical and electronic properties. However, their clinical translation has been limited by the potential toxicity especially from cadmium. Here, a versatile bioimaging probe is developed by using highly luminescent cadmium-free CuInSe2/ZnS core/shell quantum dots conjugated with CGKRK (Cys-Gly-Lys-Arg-Lys) tumor-targeting peptides. This probe exhibits excellent photostability, reasonably long circulation time, minimal toxicity, and strong tumor-specific homing property. The most important feature of this probe is that it shows distinctive versatility in tumor-targeted multimodal imaging including near-infrared, time-gated, and two-photon imaging in different tumor models. In a glioblastoma mouse model, the targeted probe clearly denotes tumor boundaries and positively labels a population of diffusely infiltrating tumor cells, suggesting its utility in precise tumor detection during surgery. This work lays a foundation for potential clinical translation of the probe.

13.
Chemistry ; 20(29): 8856-61, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24920471

RESUMEN

Three tetra-aryl substituted 1,3-butadiene derivatives with aggregation enhanced emission (AEE) and mechanochromic fluorescence behavior have been rationally designed and synthesized. The results suggest an effective design strategy for developing diverse materials with aggregation induced emission (AIE) and significant mechanochromic performance by employing D-π-A structures with large dipole moments.

14.
Nat Nanotechnol ; 18(10): 1175-1184, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37322142

RESUMEN

Stretchable polymer semiconductors (PSCs) are essential for soft stretchable electronics. However, their environmental stability remains a longstanding concern. Here we report a surface-tethered stretchable molecular protecting layer to realize stretchable polymer electronics that are stable in direct contact with physiological fluids, containing water, ions and biofluids. This is achieved through the covalent functionalization of fluoroalkyl chains onto a stretchable PSC film surface to form densely packed nanostructures. The nanostructured fluorinated molecular protection layer (FMPL) improves the PSC operational stability over an extended period of 82 days and maintains its protection under mechanical deformation. We attribute the ability of FMPL to block water absorption and diffusion to its hydrophobicity and high fluorination surface density. The protection effect of the FMPL (~6 nm thickness) outperforms various micrometre-thick stretchable polymer encapsulants, leading to a stable PSC charge carrier mobility of ~1 cm2 V-1 s-1 in harsh environments such as in 85-90%-humidity air for 56 days or in water or artificial sweat for 42 days (as a benchmark, the unprotected PSC mobility degraded to 10-6 cm2 V-1 s-1 in the same period). The FMPL also improved the PSC stability against photo-oxidative degradation in air. Overall, we believe that our surface tethering of the nanostructured FMPL is a promising approach to achieve highly environmentally stable and stretchable polymer electronics.

15.
Science ; 380(6646): 735-742, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37200416

RESUMEN

Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied.


Asunto(s)
Retroalimentación Sensorial , Robótica , Piel Artificial , Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Piel , Transistores Electrónicos
16.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873341

RESUMEN

Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.

17.
ACS Sens ; 7(12): 3644-3653, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36399772

RESUMEN

Monitoring neurochemical signaling across time scales is critical to understanding how brains encode and store information. Flexible (vs stiff) devices have been shown to improve in vivo monitoring, particularly over longer times, by reducing tissue damage and immunological responses. Here, we report our initial steps toward developing flexible and implantable neuroprobes with aptamer-field-effect transistor (FET) biosensors for neurotransmitter monitoring. A high-throughput process was developed to fabricate thin, flexible polyimide probes using microelectromechanical-system (MEMS) technologies, where 150 flexible probes were fabricated on each 4 in. Si wafer. Probes were 150 µm wide and 7 µm thick with two FETs per tip. The bending stiffness was 1.2 × 10-11 N·m2. Semiconductor thin films (3 nm In2O3) were functionalized with DNA aptamers for target recognition, which produces aptamer conformational rearrangements detected via changes in FET conductance. Flexible aptamer-FET neuroprobes detected serotonin at femtomolar concentrations in high-ionic strength artificial cerebrospinal fluid. A straightforward implantation process was developed, where microfabricated Si carrier devices assisted with implantation such that flexible neuroprobes detected physiological relevant serotonin in a tissue-hydrogel brain mimic.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Serotonina , Semiconductores , Aptámeros de Nucleótidos/química
18.
Sci Adv ; 8(1): eabk0967, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985954

RESUMEN

Wearable technologies for personalized monitoring require sensors that track biomarkers often present at low levels. Cortisol­a key stress biomarker­is present in sweat at low nanomolar concentrations. Previous wearable sensing systems are limited to analytes in the micromolar-millimolar ranges. To overcome this and other limitations, we developed a flexible field-effect transistor (FET) biosensor array that exploits a previously unreported cortisol aptamer coupled to nanometer-thin-film In2O3 FETs. Cortisol levels were determined via molecular recognition by aptamers where binding was transduced to electrical signals on FETs. The physiological relevance of cortisol as a stress biomarker was demonstrated by tracking salivary cortisol levels in participants in a Trier Social Stress Test and establishing correlations between cortisol in diurnal saliva and sweat samples. These correlations motivated the development and on-body validation of an aptamer-FET array­based smartwatch equipped with a custom, multichannel, self-referencing, and autonomous source measurement unit enabling seamless, real-time cortisol sweat sensing.

19.
ACS Nano ; 15(7): 12180-12188, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34170108

RESUMEN

Conventional photolithography, due to its scalability, robustness, and straightforward processes, has been widely applied to micro- and nanostructure manufacturing in electronics, optics, and biology. However, optical diffraction limits the ultimate resolution of conventional photolithography, which hinders its potential in nanoscale patterning for broader applications. Here, we introduce a derivative of conventional photolithography for nanoscale patterning called dual-layer photolithography (DLPL), which is based on the controlled exposure and development of overlapping positive and negative photoresists. In a typical experiment, substrates are sequentially coated by two layers of photoresists (both positive and negative). Then, we purposefully control the exposure time to generate slightly larger features in the positive photoresist than those in the negative photoresist. After development, their overlapping areas become the final features, which outline the original features. We demonstrate line widths down to 300 nm here, which can be readily improved with more precise control. By adjusting the lithography parameters and material deposition, the feature sizes, shapes (e.g., rings, numbers, letters), line widths (300-900 nm), and materials (e.g., SiO2, Cr, and Ag) of these features can be independently controlled. Combined with anisotropic etching, more complex three-dimensional nanostructures can be fabricated as well, as we demonstrate here with Si. We further fabricate photodetectors as an example application to show that these nanostructures fabricated by DLPL can be used to promote light-trapping MAPbI3 perovskite films to achieve good photoelectric properties. This strategy is not limited to ultraviolet photolithography and may also be incorporated into other energetic beam-based lithographic approaches, including deep and extreme ultraviolet photolithographies and electron beam lithography, to enhance their resolution.

20.
Sci Adv ; 7(48): eabj7422, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34818033

RESUMEN

While tools for monitoring in vivo electrophysiology have been extensively developed, neurochemical recording technologies remain limited. Nevertheless, chemical communication via neurotransmitters plays central roles in brain information processing. We developed implantable aptamer­field-effect transistor (FET) neuroprobes for monitoring neurotransmitters. Neuroprobes were fabricated using high-throughput microelectromechanical system (MEMS) technologies, where 150 probes with shanks of either 150- or 50-µm widths and thicknesses were fabricated on 4-inch Si wafers. Nanoscale FETs with ultrathin (~3 to 4 nm) In2O3 semiconductor films were prepared using sol-gel processing. The In2O3 surfaces were coupled with synthetic oligonucleotide receptors (aptamers) to recognize and to detect the neurotransmitter serotonin. Aptamer-FET neuroprobes enabled femtomolar serotonin detection limits in brain tissue with minimal biofouling. Stimulated serotonin release was detected in vivo. This study opens opportunities for integrated neural activity recordings at high spatiotemporal resolution by combining these aptamer-FET sensors with other types of Si-based implantable probes to advance our understanding of brain function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA