Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hered ; 114(2): 175-188, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36546409

RESUMEN

The Tibetan partridge (Perdix hodgsoniae) is a widely distributed endemic species in high-altitude areas across the Tibetan Plateau where the hypoxia, lower temperature and high ultraviolet radiation are pivotal factors influencing survival. However, the underlying genetic adaptation of the Tibetan partridge to extreme environments remains uncertain due to limited genomic resources. Similarly, the phylogenetic position of Perdix within Phasianidae remains controversial due to lacking information. Consequently, we de novo assembled and annotated the whole genome of the Tibetan partridge. The genome size was 1.15 Gb with contig N50 of 3.70 Mb. A total of 202.30 Mb (17.61%) repetitive elements and 445,876 perfect microsatellites were identified. A total of 16,845 functionally annotated protein-coding genes were identified in the Tibetan partridge. Genomic phylogenetic analysis across 30 Galliformes species indicated a close relationship between Perdix and typical pheasants composed of Chrysolophus, Symaticus, Phasianus, Crossopilon, and Lophura. However, the phylogenetic relationship of (Perdix + (Chrysolophus + (Syrmaticus + other pheasants))) was different from those of (Perdix + (Syrmaticus + (Chrysolophus + other pheasants))) in previous studies. Comparative genomic results identified NFKB1 and CREBBP positively selected genes related to hypoxia with 3 and 2 Tibetan partridge-specific missense mutations, respectively. Expanded gene families were mainly associated with energy metabolism and steroid hydroxylase activity, meanwhile, contracted gene families were mainly related to immunity and olfactory perception. Our genomic data considerably contribute to the phylogeny of Perdix and the underlying adaptation strategies of the Tibetan partridge to a high-altitude environment.


Asunto(s)
Altitud , Galliformes , Animales , Filogenia , Tibet , Rayos Ultravioleta , Galliformes/genética , Adaptación Fisiológica/genética , Hipoxia
2.
Animals (Basel) ; 13(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36978520

RESUMEN

The giant panda (Ailuropoda melanoleuca) is the epitome of a flagship species for wildlife conservation and also an ideal model of adaptive evolution. As an obligate bamboo feeder, the giant panda relies on the olfaction for food recognition. The number of olfactory receptor (OR) genes and the rate of pseudogenes are the main factors affecting the olfactory ability of animals. In this study, we used the chromosome-level genome of the giant panda to identify OR genes and compared the genome sequences of OR genes with five other Ursidae species (spectacled bear (Tremarctos ornatus), American black bear (Ursus americanus), brown bear (Ursus arctos), polar bear (Ursus maritimus) and Asian black bear (Ursus thibetanus)). The giant panda had 639 OR genes, including 408 functional genes, 94 partial OR genes and 137 pseudogenes. Among them, 222 OR genes were detected and distributed on 18 chromosomes, and chromosome 8 had the most OR genes. A total of 448, 617, 582, 521 and 792 OR genes were identified in the spectacled bear, American black bear, brown bear, polar bear and Asian black bear, respectively. Clustering analysis based on the OR protein sequences of the six species showed that the OR genes distributed in 69 families and 438 subfamilies based on sequence similarity, and the six mammals shared 72 OR gene subfamilies, while the giant panda had 31 unique OR gene subfamilies (containing 35 genes). Among the 35 genes, there are 10 genes clustered into 8 clusters with 10 known human OR genes (OR8J3, OR51I1, OR10AC1, OR1S2, OR1S1, OR51S1, OR4M1, OR4M2, OR51T1 and OR5W2). However, the kind of odor molecules can be recognized by the 10 known human OR genes separately, which needs further research. The phylogenetic tree showed that 345 (about 84.56%) functional OR genes were clustered as Class-II, while only 63 (about 15.44%) functional OR genes were clustered as Class-I, which required further and more in-depth research. The potential odor specificity of some giant panda OR genes was identified through the similarity to human protein sequences. Sequences similar to OR2B1, OR10G3, OR11H6 and OR11H7P were giant panda-specific lacking, which may be related to the transformation and specialization from carnivore to herbivore of the giant panda. Since our reference to flavoring agents comes from human research, the possible flavoring agents from giant panda-specific OR genes need further investigation. Moreover, the conserved motifs of OR genes were highly conserved in Ursidae species. This systematic study of OR genes in the giant panda will provide a solid foundation for further research on the olfactory function and variation of the giant panda.

3.
Animals (Basel) ; 13(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38066952

RESUMEN

Pheasants are widely distributed in the southwest of China, but many of them are endangered due to habitat fragmentation and environmental changes. Genetic diversity is crucial for species to maintain their evolutionary potential, and thus it is important to develop universal genetic markers for facilitating the assessment of genetic diversity and planning effective conservation actions in these endangered species. In this study, 471 microsatellite loci which are common among eight pheasant species were screened based on genome data, and 119 loci were selected to develop microsatellite markers. After PCR amplifications and reaction condition optimizations, and validation of microsatellite loci in 14 species of 11 genera within Phasianidae. Finally, 49 potentially universal microsatellite markers in pheasant species were obtained. These microsatellite markers were successfully applied to assess the genetic diversity of 3 pheasant species. The Sichuan hill partridge (Arborophila rufipectus), blood pheasant (Ithaginis cruentus), buff-throated partridge (Tetraophasis szechenyii) and Sichuan hill partridge had a relatively low genetic diversity level. These 49 microsatellite loci are potentially universal microsatellite loci for pheasants and are of great significance to establish a shared platform in population genetics study of pheasants.

4.
Genome Biol Evol ; 14(9)2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35975810

RESUMEN

The leopard (Panthera pardus) has the largest natural distribution from low- to high-altitude areas of any wild felid species, but recent studies have revealed that leopards have disappeared from large areas, probably owing to poaching, a decline of prey species, and habitat degradation. Here, we reported the chromosome-scale genome assembly of the high-altitude leopard (HL) based on nanopore sequencing and high-throughput chromatin conformation capture (Hi-C) technology. Panthera genomes revealed similar repeat composition, and there was an appreciably conserved synteny between HL and the other two Panthera genomes. Divergence time analysis based on the whole genomes revealed that the HL and the low-altitude leopard differentiate from a common ancestor ∼2.2 Ma. Through comparative genomics analyses, we found molecular genetic signatures that may reflect high-altitude adaptation of the HL. Three HL-specific missense mutations were detected in two positively selected genes, that is, ITGA7 (Ala112Gly, Asp113Val, and Gln115Pro) and NOTCH2 (Ala2398Ser), which are likely to be associated with hypoxia adaptation. The chromosome-level genome of the HL provides valuable resources for the investigation of high-altitude adaptation and protection management of the vulnerable leopard.


Asunto(s)
Panthera , Altitud , Animales , Cromosomas , Ecosistema , Genoma , Panthera/genética
5.
Front Genet ; 13: 995700, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303550

RESUMEN

DNA methylation modification can regulate gene expression without changing the genome sequence, which helps organisms to rapidly adapt to new environments. However, few studies have been reported in non-model mammals. Giant panda (Ailuropoda melanoleuca) is a flagship species for global biodiversity conservation. Wildness and reintroduction of giant pandas are the important content of giant pandas' protection. However, it is unclear how wildness training affects the epigenetics of giant pandas, and we lack the means to assess the adaptive capacity of wildness training giant pandas. We comparatively analyzed genome-level methylation differences in captive giant pandas with and without wildness training to determine whether methylation modification played a role in the adaptive response of wildness training pandas. The whole genome DNA methylation sequencing results showed that genomic cytosine methylation ratio of all samples was 5.35%-5.49%, and the methylation ratio of the CpG site was the highest. Differential methylation analysis identified 544 differentially methylated genes (DMGs). The results of KEGG pathway enrichment of DMGs showed that VAV3, PLCG2, TEC and PTPRC participated in multiple immune-related pathways, and may participate in the immune response of wildness training giant pandas by regulating adaptive immune cells. A large number of DMGs enriched in GO terms may also be related to the regulation of immune activation during wildness training of giant pandas. Promoter differentially methylation analysis identified 1,199 genes with differential methylation at promoter regions. Genes with low methylation level at promoter regions and high expression such as, CCL5, P2Y13, GZMA, ANP32A, VWF, MYOZ1, NME7, MRPS31 and TPM1 were important in environmental adaptation for wildness training giant pandas. The methylation and expression patterns of these genes indicated that wildness training giant pandas have strong immunity, blood coagulation, athletic abilities and disease resistance. The adaptive response of giant pandas undergoing wildness training may be regulated by their negatively related promoter methylation. We are the first to describe the DNA methylation profile of giant panda blood tissue and our results indicated methylation modification is involved in the adaptation of captive giant pandas when undergoing wildness training. Our study also provided potential monitoring indicators for the successful reintroduction of valuable and threatened animals to the wild.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA