Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(6): e22992, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219513

RESUMEN

Oxidative stress and lipid metabolism disorder caused by estrogen deficiency are regarded as the main causes of postmenopausal atherosclerosis, but the underlying mechanisms remain still unclear. In this study, ovariectomized (OVX) female ApoE-/- mice fed with high-fat diet were used to imitate postmenopausal atherosclerosis. The atherosclerosis progression was significantly accelerated in OVX mice, accompanied by the upregulation of ferroptosis indicators, including increased lipid peroxidation and iron deposition in the plaque and the plasma. While both estradiol (E2) and ferroptosis inhibitor ferrostatin-1 alleviated atherosclerosis in OVX mice, with the inhibition of lipid peroxidation and iron deposition, as well as the upregulation of xCT and GPX4, especially in endothelial cells. We further investigated the effects of E2 on ferroptosis in endothelial cells induced by oxidized-low-density lipoprotein or ferroptosis inducer Erastin. It was found that E2 exhibited anti-ferroptosis effect through antioxidative functions, including improving mitochondrial dysfunction and upregulating GPX4 expression. Mechanistically, NRF2 inhibition attenuated the effect of E2 against ferroptosis as well as the upregulation of GPX4. Our findings revealed that endothelial cell ferroptosis played a pivotal role in postmenopausal atherosclerosis progression, and the NRF2/GPX4 pathway activation contributed to the protection of E2 against endothelial cell ferroptosis.


Asunto(s)
Aterosclerosis , Factor 2 Relacionado con NF-E2 , Animales , Femenino , Ratones , Células Endoteliales , Estrógenos/deficiencia , Hierro , Posmenopausia
2.
Fish Shellfish Immunol ; 144: 109248, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030028

RESUMEN

Columnaris disease continues to inflict substantial losses among freshwater cultured species since its first description one hundred years ago. The experimental and anecdotal evidence suggests an expanded range and rising virulence of columnaris worldwide due to the warming global climate. The channel catfish (Ictalurus punctatus) are particularly vulnerable to columnaris. A recently developed live attenuated vaccine (17-23) for Flavobacterium columnare (now Flavobacterium covae sp. nov.) demonstrated superior protection for vaccinated catfish against genetically diverse columnaris isolates. In this study, we aimed to elucidate the molecular mechanisms and patterns of immune evasion and host manipulation linked to virulence by comparing gene expression changes in the host after the challenge with a virulent (BGSF-27) or live attenuated F. covae sp. nov. vaccine (17-23). Thirty-day-old fry were accordingly challenged with either virulent or vaccine isolates. Gill tissues were collected at 0 h (control), 1 h, and 2 h post-infection, which are two critical time points in early host-pathogen interactions. Transcriptome profiling of the gill tissues revealed a larger number (518) of differentially expressed genes (DEGs) in vaccine-exposed fish than those exposed to the virulent pathogen (321). Pathway analyses suggested potent suppression of early host immune responses by the virulent isolate through a higher expression of nuclear receptor corepressors (NCoR) responsible for antagonizing macrophage and T-cell signaling. Conversely, in vaccinated fry, we observed induction of Ca2+/calmodulin-dependent protein kinase II (CAMKII), responsible for clearing NCoR, and commensurate up-regulation of transcription factor AP-1 subunits, c-Fos, and c-Jun. As in mammalian systems, AP-1 expression was connected with a broad immune activation in vaccinated fry, including induction of CC chemokines, proteinases, iNOS, and IL-12b. Relatedly, divergent expression patterns of Src tyrosine kinase Lck, CD44, and CD28 indicated a delay or suppression of T-cell adhesion and activation in fry exposed to the virulent isolate. Broader implications of these findings will be discussed. The transcriptomic differences between virulent and attenuated bacteria may offer insights into how the host responds to the vaccination or infection and provide valuable knowledge to understand the early immune mechanisms of columnaris disease in aquaculture.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Ictaluridae , Animales , Vacunas Atenuadas , Flavobacterium/fisiología , Mamíferos
3.
Molecules ; 28(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298906

RESUMEN

Deep generative models applied to the generation of novel compounds in small-molecule drug design have attracted a lot of attention in recent years. To design compounds that interact with specific target proteins, we propose a Generative Pre-Trained Transformer (GPT)-inspired model for de novo target-specific molecular design. By implementing different keys and values for the multi-head attention conditional on a specified target, the proposed method can generate drug-like compounds both with and without a specific target. The results show that our approach (cMolGPT) is capable of generating SMILES strings that correspond to both drug-like and active compounds. Moreover, the compounds generated from the conditional model closely match the chemical space of real target-specific molecules and cover a significant portion of novel compounds. Thus, the proposed Conditional Generative Pre-Trained Transformer (cMolGPT) is a valuable tool for de novo molecule design and has the potential to accelerate the molecular optimization cycle time.


Asunto(s)
Enfermedades de los Animales , Diseño de Fármacos , Animales
4.
Entropy (Basel) ; 25(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36981390

RESUMEN

Zero-shot sketch-based image retrieval (ZS-SBIR) is an important computer vision problem. The image category in the test phase is a new category that was not visible in the training stage. Because sketches are extremely abstract, the commonly used backbone networks (such as VGG-16 and ResNet-50) cannot handle both sketches and photos. Semantic similarities between the same features in photos and sketches are difficult to reflect in deep models without textual assistance. To solve this problem, we propose a novel and effective feature embedding model called Attention Map Feature Fusion (AMFF). The AMFF model combines the excellent feature extraction capability of the ResNet-50 network with the excellent representation ability of the attention network. By processing the residuals of the ResNet-50 network, the attention map is finally obtained without introducing external semantic knowledge. Most previous approaches treat the ZS-SBIR problem as a classification problem, which ignores the huge domain gap between sketches and photos. This paper proposes an effective method to optimize the entire network, called domain-aware triplets (DAT). Domain feature discrimination and semantic feature embedding can be learned through DAT. In this paper, we also use the classification loss function to stabilize the training process to avoid getting trapped in a local optimum. Compared with the state-of-the-art methods, our method shows a superior performance. For example, on the Tu-berlin dataset, we achieved 61.2 + 1.2% Prec200. On the Sketchy_c100 dataset, we achieved 62.3 + 3.3% mAPall and 75.5 + 1.5% Prec100.

5.
Fish Shellfish Immunol ; 125: 171-179, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35569776

RESUMEN

The dinoflagellate Amyloodinium ocellatum is an important pathogenic parasite infecting cultured marine and brackish water fishes worldwide. This includes cultured Florida pompano (Trachinotus carolinus), which is one of the most desirable marine food fish with high economic value in the USA. A. ocellatum infects fish gills and causes tissue damage, increased respiratory rate, reduced appetite, and mortality, especially in closed aquaculture systems. This study mimicked the natural infection of A. ocellatum in cultured pompano and conducted a transcriptomic comparison of gene expression in the gills of control and A. ocellatum infected fish to explore the molecular mechanisms of infection. RNA-seq data revealed 604 differentially expressed genes in the infected fish gills. The immunoglobulin genes (including IgM/T) augmentation and IL1 inflammation suppression were detected after infection. Genes involved in reactive oxygen species mediating parasite killing were also highly induced. However, excessive oxidants have been linked to oxidative tissue damage and apoptosis. Correspondingly, widespread down-regulation of collagen genes and growth factor deprivation indicated impaired tissue repair, and meanwhile the key executor of apoptosis, caspase-3 was highly expressed (25.02-fold) in infected fish. The infection also influenced the respiratory gas sensing and transport genes and established hypoxic conditions in the gill tissue. Additionally, food intake and lipid metabolism were also affected. Our work provides the transcriptome sequencing of Florida pompano and provides key insights into the acute pathogenesis of A. ocellatum. This information can be utilized for designing optimal disease surveillance strategies, future selection for host resistance, and development of novel therapeutic measures.


Asunto(s)
Dinoflagelados , Enfermedades de los Peces , Perciformes , Animales , Dinoflagelados/fisiología , Enfermedades de los Peces/parasitología , Peces/genética , Branquias/parasitología , Perciformes/genética , Transcriptoma
6.
J Acoust Soc Am ; 152(1): 624, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35931530

RESUMEN

An effective homogenization model for the acoustic coating of underwater structures is important for reducing the complexity of acoustic scattering computation, which arises from the huge difference in scale between the integral structure and the inhomogeneous microstructure of the coating. The main difficulty of this homogenization arises from the oblique-incidence effect of external sound waves and the interface effect between the coating and backing. In this work, a hybrid method, combining the Bloch wave analysis and retrieval technique, is proposed to characterize the acoustic behavior of the voided coating backed with a steel plate under the action of external sound waves with an arbitrary incident angle. The effectiveness of this method is validated by numerical simulations and comparison with the Bloch wave method and the traditional retrieval method. The influence of the shear-wave effect under obliquely incident sound waves and the coupling effect between the coating and the backing on the homogenization model is investigated in detail, providing a comprehensive understanding of the effective acoustic behavior of the coating.

7.
BMC Genomics ; 22(1): 620, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399686

RESUMEN

BACKGROUND: Grass carp (Ctenopharyngodon idella) is one of the most widely cultivated fishes in China. High stocking density can reportedly affect fish growth and immunity. Herein we performed PacBio long-read single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing to evaluate the effects of high stocking density on grass carp transcriptome. RESULTS: SMRT sequencing led to the identification of 33,773 genes (14,946 known and 18,827 new genes). From the structure analysis, 8,009 genes were detected with alternative splicing events, 10,219 genes showed alternative polyadenylation sites and 15,521 long noncoding RNAs. Further, 1,235, 962, and 213 differentially expressed genes (DEGs) were identified in the intestine, muscle, and brain tissues, respectively. We performed functional enrichment analyses of DEGs, and they were identified to be significantly enriched in nutrient metabolism and immune function. The expression levels of several genes encoding apolipoproteins and activities of enzymes involved in carbohydrate enzymolysis were found to be upregulated in the high stocking density group, indicating that lipid metabolism and carbohydrate decomposition were accelerated. Besides, four isoforms of grass carp major histocompatibility complex class II antigen alpha and beta chains in the aforementioned three tissue was showed at least a 4-fold decrease. CONCLUSIONS: The results suggesting that fish farmed at high stocking densities face issues associated with the metabolism and immune system. To conclude, our results emphasize the importance of maintaining reasonable density in grass carp aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Empalme Alternativo , Animales , Carpas/genética , Carpas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma
8.
Fish Shellfish Immunol ; 72: 426-435, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29133252

RESUMEN

Rhamnose-binding lectins (RBLs) are crucial elements associated with innate immune responses to infections and have been characterized from a variety of teleost fishes. Given the importance of RBL in teleost fishes, we sought to study the diversity and expression profiles of RBLs in an important cultured fish, Nile tilapia (Oreochromis niloticus) following experimental infection with Streptococcus agalactiae, a major cause of streptococcosis in farmed tilapia. In this study, four predicted RBL genes were identified from Nile tilapia and were designated as OnRBL3a, OnRBL3b, OnRBL3c, and OnRBL3d. These OnRBLs were composed of two tandem-repeated type five carbohydrate recognition domains (CRDs), classified as type IIIc, and all clustered together phylogenetically. OnRBL-CRDs shared conserved topology of eight cysteine residues, characteristic peptide motifs of -YGR- and -DPC- (or -FGR- and -DTC-), and similar exon/intron organization. OnRBLs had the highest expression in immune-related tissues, gills, intestine or liver. However, the changes of OnRBL expression in the gills and intestine at 2 h, 4 h and 24 h post S. agalactiae challenge were modest, suggesting that tilapia may not mediate the entry or confront the infection of S. agalactiae through induction of RBL genes. The observed expression pattern may be related to the RBL type and CRD composition, S. agalactiae pathogenesis, the accessibility of ligands on the bacterial surface, and/or the species of fish. OnRBLs characterized in this study were the first RBL members identified in Nile tilapia and their characterization will expand our knowledge of RBLs in immunity.


Asunto(s)
Cíclidos/genética , Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Lectinas/genética , Lectinas/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica , Membrana Mucosa , Filogenia , Ramnosa , Alineación de Secuencia/veterinaria
9.
Fish Shellfish Immunol ; 71: 160-170, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28989091

RESUMEN

A recently developed attenuated vaccine for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates. We were interested in examining the mechanisms of this protection by comparing transcriptional responses to F. columnare challenge in vaccinated and unvaccinated juvenile catfish. Accordingly, 58 day old fingerling catfish (28 days post-vaccination or unvaccinated control) were challenged with a highly virulent F. columnare isolate (BGSF-27) and gill tissues collected pre-challenge (0 h), and 1 h and 2 h post infection, time points previously demonstrated to be critical in early host-pathogen interactions. Following RNA-sequencing and transcriptome assembly, differential expression (DE) analysis within and between treatments revealed several patterns and pathways potentially underlying improved survival of vaccinated fish. Most striking was a pattern of dramatically higher basal expression of an array of neuropeptides (e.g. somatostatin), hormones, complement factors, and proteases at 0 h in vaccinated fish. Previous studies indicate these are likely the preformed mediators of neuroendocrine cells and/or eosinophilic granular (mast-like) cells within the fish gill. Following challenge, these elements fell to almost undetectable levels (>100-fold downregulated) by 1 h in vaccinated fish, suggesting their rapid release and/or cessation of synthesis following degranulation. Concomitantly, levels of pro-inflammatory cytokines (IL-1b, IL-8, IL-17) were induced in unvaccinated fish. In contrast, in vaccinated catfish, we observed widespread induction of genes needed for collagen deposition and tissue remodeling. Taken together, our results indicate an important component of vaccine protection in fish mucosal tissues may be the sensitization, proliferation and arming of resident secretory cells in the period between primary and secondary challenge.


Asunto(s)
Vacunas Bacterianas/inmunología , Enfermedades de los Peces/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/inmunología , Ictaluridae , Transcriptoma , Animales , Infecciones por Flavobacteriaceae/inmunología , Branquias/inmunología
10.
Fish Shellfish Immunol ; 60: 44-49, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27818340

RESUMEN

Flavobacterium columnare is the causative agent of columnaris disease and causes tremendous morbidity and mortality of farmed fish globally. Previously, we identified a potential lectin-mediator (a rhamnose-binding lectin; RBL1a) of F. columnare adhesion and showed higher RBL1a expression in susceptible channel catfish under basal conditions and following infection. Exposure of challenged fish to the carbohydrate ligand l-rhamnose just prior to a challenge substantially decreased columnaris mortality and pathogen adherence via the down-regulation of RBL1a. While highly effective in protecting fish from columnaris, l-rhamnose is prohibitively expensive, underscoring the need for alternative cost-effective sources of rhamnose for disease control. One such alternative may be microbially produced glycolipid compounds termed rhamnolipids (RLs), which feature abundant l-rhamnose moieties and are readily available from commercial sources. In the present study, we examined whether commercially available RLs (administered either by immersion or via feed) would function similarly to l-rhamnose in affording host protection against F. columnare. A four-week feeding trial with basal and RL top-coated diets (basal diet + RLs) was conducted in channel catfish fingerlings. Surprisingly, columnaris challenges revealed significantly lower survival following the 10 d challenge period in RL diet fed fish when compared with the basal treatment group (p < 0.001). In fish fed RLs, we observed a rapid and large-scale upregulation of RBL1a immediately after challenge combined with a suppression of mucin and lysozyme transcripts. Similarly, fish that were briefly pre-exposed to RLs by immersion and then challenged exhibited lower survival as compared to unexposed fish during a 4 d trial. In conclusion, RLs do not represent an alternative to rhamnose as an experimental treatment for protecting catfish from columnaris mortality. Further research is needed to find other affordable and efficacious alternative sources of l-rhamnose.


Asunto(s)
Dieta/veterinaria , Susceptibilidad a Enfermedades/veterinaria , Enfermedades de los Peces/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Glucolípidos/inmunología , Ictaluridae/inmunología , Administración Oral , Alimentación Animal/análisis , Animales , Susceptibilidad a Enfermedades/inmunología , Susceptibilidad a Enfermedades/microbiología , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/fisiología , Glucolípidos/administración & dosificación , Ictaluridae/crecimiento & desarrollo
11.
Fish Shellfish Immunol ; 51: 401-404, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26980611

RESUMEN

Insulin-like peptide (ILP) has emerged as a cell regulatory factor with multiple functions in vertebrates and invertebrates. In the present study, we identified and characterized two ILP genes, ILP1 and ILP2, in the razor clam Sinonovacula constricta. Both ILPs have a signal peptide and a mature domain consisting of six strictly conserved cysteines. The tertiary structure is divided into three main α-helices with a C-domain loop that separates helix 1 from helix 2. Both of ILPs were found to be regulated according to tissue type and developmental stage. After challenge with Vibrio anguillarum, Vibrio parahaemolyticus and Micrococcus lysodeikticus, the expression of two ILP genes was significantly up-regulated in the liver, hemocytes and mantle tissues, suggesting that the ILPs may play roles in the innate immunity in the razor clam Sinonovacula constricta.


Asunto(s)
Infecciones Bacterianas/genética , Bivalvos/genética , Bivalvos/inmunología , Hormonas Peptídicas/genética , Hormonas Peptídicas/inmunología , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/veterinaria , Hemocitos/metabolismo , Inmunidad Innata , Hígado/metabolismo , Micrococcus , Filogenia , Vibrio
12.
Fish Shellfish Immunol ; 48: 112-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26626584

RESUMEN

Cathepsin S belongs to the papain family of cysteine protease, and is considered to play key roles in immune responses after bacterial challenge. However, despite the recognized importance of Cathepsin S in immunity, no studies have systematically characterized Cathepsin S in catfish. In this regard, here, we characterized the Cathepsin S gene family in channel catfish, and investigated their expression patterns following two different Gram-negative bacterial challenge. In the present study, two Cathepsin S genes (ctss and ctssa) were captured in channel catfish. In comparison to other species, the catfish Cathepsin S genes are highly conserved in their structural features. Phylogenetic analysis indicated the strongest phylogenetic relationship with zebrafish, which is consistent with their evolutional relationships. Tissue distribution analysis revealed that Cathepsin S genes were ubiquitously expressed in catfish tissues. Following bacterial infection, the Cathepsin S genes were significantly up-regulated at most time-points in mucosal surfaces, with an acute response post Edwardsiella ictaluri infection. Obviously, the expression profiles were quite distinct between two Cathepsin S genes, across the tissues and between pathogens, suggesting that Cathepsin S genes may exert disparate roles in mucosal immune responses. Our findings here, provide early insight into the immune functions of Cathepsin S in catfish; however, further studies are needed to determine the mechanisms of Cathepsin S for antigen presentation during inflammatory processes and innate host defense.


Asunto(s)
Catepsinas/genética , Proteínas de Peces/genética , Ictaluridae , Membrana Mucosa/inmunología , Animales , Catepsinas/inmunología , Edwardsiella ictaluri , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Infecciones por Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium , Ictaluridae/genética , Ictaluridae/inmunología , Ictaluridae/microbiología , Inmunidad Mucosa/genética , Filogenia
13.
Fish Shellfish Immunol ; 49: 324-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26767746

RESUMEN

Galectins, a family of ß-galactoside-binding lectins with conserved CRDs, which can recognize the glycans on the surface of viruses, bacteria and protozoan parasites, are emerging as key players in many important pathological processes, including acute and chronic inflammatory diseases, autoimmunity and apoptosis. Although galectins have attracted great interest in mammals, they are still poorly-characterized in teleost. Previously, several studies have reported their high expression levels in mucosal tissues before and post infection. Given the important roles for galectins in mucosal immunity, therefore, we characterized the galectin gene family and profiled family member expression after challenge with two different Gram-negative bacterial pathogens. Here, twelve galectins genes were captured in channel catfish (Ictalurus punctatus), and phylogenetic analysis showed the strongest relationship to zebrafish and salmon, which is consistent with their phylogenetic relationships. Furthermore, the galectin genes were widely expressed in catfish tissues, while most of the galectin genes were strongly expressed in mucosal tissues (skin, gill and intestine). In addition, the expression profiles of galectins after bacterial infection varied depending on both pathogen and tissue type, suggesting that galectins may exert disparate functions or exhibit distinct tissue-selective roles in the host immune response to bacterial pathogens. Further studies are needed, however, to expand functional characterization and examine whether galectins may also play additional physiological roles in catfish immunity.


Asunto(s)
Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Galectinas/genética , Regulación de la Expresión Génica , Ictaluridae , Membrana Mucosa/inmunología , Animales , Edwardsiella ictaluri/fisiología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/fisiología , Galectinas/metabolismo , Perfilación de la Expresión Génica , Ictaluridae/clasificación , Ictaluridae/genética , Ictaluridae/metabolismo , Inmunidad Mucosa/inmunología , Datos de Secuencia Molecular , Membrana Mucosa/microbiología , Filogenia , Alineación de Secuencia/veterinaria , Análisis de Secuencia de Proteína/veterinaria
14.
Fish Shellfish Immunol ; 46(2): 537-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26220643

RESUMEN

Fish are covered by a watery gel-mucus, mainly secreted by the goblet cells, serving as the physical and biochemical barrier between the external environment and the interior milieu, playing more important roles in fish that without scale. Despite the important roles of mucus in fish immunity, the knowledge of detailed molecular events happened during infection process is still limited. While most studies were focused on characterizing the protein and enzyme activities in the mucus following challenge, no studies have examined the gene expression profiles in fish mucus. In this regard, herein we carried out the first gene profiling analysis in catfish mucus using real-time PCR. Ten important immune-related genes were selected according to our previous studies. Their expression levels were examined in the early timepoints (namely, 1 h, 2 h, 4 h, 8 h, and 24 h) following Flavobacterium columnare challenge. Notably, expression levels of most of the selected genes were rapidly altered by the challenge. Seven genes were down-regulated, while only three genes were up-regulated. In addition, the gene expression patterns in mucus were very different from the mucosal surfaces (skin, gill and intestine) and the classical immune organs (liver, spleen and kidney). The unique expression patterns obtained here may be resulted from the great advantage of the large amount of attached bacteria in the mucus than the internal tissues, and resulted from the bacteria virulent actors to suppress the host immune response. Taken together, our results can expand our knowledge of fish mucosal immunity, and the un-lethal mucus sampling can provide early insight for developing the strategies for selection of disease resistant families and strains in catfish as well as other fish species.


Asunto(s)
Enfermedades de los Peces/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/fisiología , Regulación de la Expresión Génica/inmunología , Ictaluridae , Inmunidad Mucosa/genética , Moco/inmunología , Animales , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Inmunidad Innata/genética , Moco/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
15.
Fish Shellfish Immunol ; 47(2): 751-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26497091

RESUMEN

The mucosal surfaces of fish (skin, gill and intestine) constitute the primary line of defense against pathogen invasion. Although the importance of fish mucosal surfaces as the first barriers against pathogens cannot be overstated, the knowledge of teleost mucosal immunity are still limited. Cathepsin B, a lysosomal cysteine protease, is involved in multiple levels of physiological and biological processes, and playing crucial roles for host immune defense against pathogen infection. In this regard, we identified the cathepsin B (ctsba) of channel catfish and investigated the expression patterns of the ctsba in mucosal tissues following Edwardsiella ictaluri and Flavobacterium columnare challenge. Here, catfish ctsba gene was widely expressed in all examined tissues with the lowest expression level in muscle, and the highest expression level in trunk kidney, followed by spleen, gill, head kidney, intestine, liver and skin. In addition, the phylogenetic analysis showed the catfish ctsba had the strongest relationship to zebrafish. Moreover, the ctsba showed a general trend of up-regulated in mucosal tissues following both Gram-negative bacterial challenge. Taken together, the increased expression of ctsba in mucosal surfaces indicated the protective function of ctsba against bacterial infection, and the requirement for effective clearance of invading bacteria. Further studies are needed, indeed, to expand functional characterization and examine whether ctsba may play additional physiological and biological roles in catfish mucosal tissues.


Asunto(s)
Catepsina B/genética , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Infecciones por Flavobacteriaceae/veterinaria , Ictaluridae , Secuencia de Aminoácidos , Animales , Catepsina B/química , Catepsina B/metabolismo , Edwardsiella ictaluri/fisiología , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Infecciones por Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/fisiología , Membrana Mucosa/inmunología , Filogenia , Alineación de Secuencia/veterinaria
16.
Fish Shellfish Immunol ; 47(1): 582-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26434716

RESUMEN

The mucosal surfaces of fish are the first line of host defense against various pathogens. The mucosal immune responses are the most critical events to prevent pathogen attachment and invasion. Cathepsins are a group of peptidases that involved in different levels of immune responses, but the knowledge of the roles of Cathepsin in mucosal immune responses against bacterial infection are still lacking. Therefore, in the present study we characterized the Cathepsin L gene family in channel catfish, and profiled their expression levels after challenging with two different Gram-negative bacterial pathogens. Here, two Cathepsin L genes were identified from channel catfish and were designated CTSL1a and CTSL.1. Comparing to other fish species, the catfish CTSL genes are highly conserved in their structural features. Phylogenetic analysis was conducted to confirm the identification of CTSL genes. Expression analysis revealed that the CTSL genes were ubiquitously expressed in all tested tissues. Following infection, the CTSL genes were significantly induced at most timepoints in mucosal tissues. But the expression patterns varied depending on both pathogen and tissue types, suggesting that CTSL genes may exert disparate functions or exhibit distinct tissue-selective roles in mucosal immune responses. Our findings here, clearly revealed the key roles of CTSL in catfish mucosal immunity; however, further studies are needed to expand functional characterization and examine whether CTSL may also play additional physiological roles in catfish mucosal tissues.


Asunto(s)
Catepsina L/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica , Ictaluridae , Inmunidad Mucosa , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Animales , Catepsina L/química , Catepsina L/metabolismo , Edwardsiella ictaluri/fisiología , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Infecciones por Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/fisiología , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Filogenia , Alineación de Secuencia/veterinaria
17.
Fish Shellfish Immunol ; 46(2): 624-37, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26164837

RESUMEN

One of the highest priority areas for improvement in aquaculture is the development of dietary additives and formulations which provide for complete mucosal health and protection of fish raised in intensive systems. Far greater attention has been paid to dietary impact on gut health than to protective effects at other mucosal surfaces such as skin and gill. These exterior surfaces, however, are important primary targets for pathogen attachment and invasion. Flavobacterium columnare, the causative agent of columnaris disease, is among the most prevalent of all freshwater disease-causing bacteria, impacting global aquaculture of catfish, salmonids, baitfish and aquaria-trade species among others. This study evaluated whether the feeding of a standard catfish diet supplemented with Alltech dietary additives Actigen(®), a concentrated source of yeast cell wall-derived material and/or Allzyme(®) SSF, a fermented strain of Aspergillus niger, could offer protection against F. columnare mortality. A nine-week feeding trial of channel catfish fingerlings with basal diet (B), B + Allzyme(®) SSF, B + Actigen(®) and B + Actigen(®)+Allzyme(®) SSF revealed good growth in all conditions (FCR < 1.0), but no statistical differences in growth between the treatments were found. At nine weeks, based on pre-challenge trial results, basal, B + Actigen(®), and B + Allzyme(®) SSF groups of fish were selected for further challenges with F. columnare. Replicated challenge with a virulent F. columnare strain, revealed significantly longer median days to death in B + Allzyme(®) SSF and B + Actigen(®) when compared with the basal diet (P < 0.05) and significantly higher survival following the eight day challenge period in B + Actigen(®) when compared with the other two diets (P < 0.05). Given the superior protection provided by the B + Actigen(®) diet, we carried out transcriptomic comparison of gene expression of fish fed that diet and the basal diet before and after columnaris challenge using high-throughput RNA-seq. Pathway and enrichment analyses revealed changes in mannose receptor DEC205 and IL4 signaling at 0 h (prior to challenge) which likely explain a dramatic divergence in expression profiles between the two diets soon after pathogen challenge (8 h). Dietary mannose priming resulted in reduced expression of inflammatory cytokines, shifting response patterns instead to favor resolution and repair. Our results indicate that prebiotic dietary additives may provide protection extending beyond the gut to surface mucosa.


Asunto(s)
Aspergillus niger/química , Enfermedades de los Peces/tratamiento farmacológico , Infecciones por Flavobacteriaceae/veterinaria , Ictaluridae , Oligosacáridos/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Fermentación , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/mortalidad , Infecciones por Flavobacteriaceae/tratamiento farmacológico , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/mortalidad , Flavobacterium/fisiología , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Mananos/administración & dosificación , Mananos/metabolismo , Oligosacáridos/administración & dosificación
18.
Evol Appl ; 17(6): e13710, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38817396

RESUMEN

Selective breeding for production traits has yielded relatively rapid successes with high-fecundity aquaculture species. Discovering the genetic changes associated with selection is an important goal for understanding adaptation and can also facilitate better predictions about the likely fitness of selected strains if they escape aquaculture farms. Here, we hypothesize domestication as a genetic change induced by inadvertent selection in culture. Our premise is that standardized culture protocols generate parallel domestication effects across independent strains. Using eastern oyster as a model and a newly developed 600K SNP array, this study tested for parallel domestication effects in multiple independent selection lines compared with their progenitor wild populations. A single contrast was made between pooled selected strains (1-17 generations in culture) and all wild progenitor samples combined. Population structure analysis indicated rank order levels of differentiation as [wild - wild] < [wild - cultured] < [cultured - cultured]. A genome scan for parallel adaptation to the captive environment applied two methodologically distinct outlier tests to the wild versus selected strain contrast and identified a total of 1174 candidate SNPs. Contrasting wild versus selected strains revealed the early evolutionary consequences of domestication in terms of genomic differentiation, standing genetic diversity, effective population size, relatedness, runs of homozygosity profiles, and genome-wide linkage disequilibrium patterns. Random Forest was used to identify 37 outlier SNPs that had the greatest discriminatory power between bulked wild and selected oysters. The outlier SNPs were in genes enriched for cytoskeletal functions, hinting at possible traits under inadvertent selection during larval culture or pediveliger setting at high density. This study documents rapid genomic changes stemming from hatchery-based cultivation of eastern oysters, identifies candidate loci responding to domestication in parallel among independent aquaculture strains, and provides potentially useful genomic resources for monitoring interbreeding between farm and wild oysters.

19.
Clin Exp Med ; 24(1): 149, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967892

RESUMEN

Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People's Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.


Asunto(s)
Bibliometría , Síndrome del Colon Irritable , MicroARNs , Síndrome del Colon Irritable/genética , Humanos , MicroARNs/genética
20.
Mol Ecol Resour ; 24(1): e13801, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37186213

RESUMEN

Genome assembly can be challenging for species that are characterized by high amounts of polymorphism, heterozygosity, and large effective population sizes. High levels of heterozygosity can result in genome mis-assemblies and a larger than expected genome size due to the haplotig versions of a single locus being assembled as separate loci. Here, we describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a critical resource for foundational research into molluscan adaptation to a changing environment and for selective breeding for the aquaculture industry. Subsequent resequencing data suggested the presence of haplotigs in the original assembly, and we developed a post hoc method to break up chimeric contigs and mask haplotigs in published heterozygous genomes and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and nuanced effects on estimates of heterozygosity, population structure analysis, and outlier detection. We show that haplotig masking can be a powerful tool for improving genomic inference, and we present an open, reproducible resource for the masking of haplotigs in any published genome.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Genómica/métodos , Análisis de Secuencia de ADN , Polimorfismo Genético , Tamaño del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA