RESUMEN
A strategy for optimizing the rolling resistance, wet skid and cut resistance of reinforced rubber simultaneously using a supramolecular filler is demonstrated. A ß-alanine trimer-grafted Styrene Butadiene Rubber (A3-SBR) pristine polymer was designed and mechanically mixed with commercially available styrene butadiene rubber to help the dispersion of a ß-alanine trimer (A3) supramolecular filler in the rubber matrix. To increase the miscibility of A3-SBR with other rubber components during mechanical mixing, the pristine polymer was saturated with ethanol before mixing. The mixture was vulcanized using a conventional rubber processing method. The morphology of the assembles of the A3 supramolecular filler in the rubber matrix was studied by Differential Scanning Calorimetry (DSC) and Transmission Electron Microscopy (TEM). The Differential Scanning Calorimetry study showed that the melting temperature of ß-sheet crystals in the vulcanizates was around 179 °C and was broad. The melting temperature was similar to that of the pristine polymer, and the broad melting peak likely suggests that the size of the crystals is not uniform. The Transmission Electron Microscopy study revealed that after mixing the pristine polymer with SBR, some ß-sheet crystals were rod-like with several tens of nanometers and some ß-sheet crystals were particulate with low aspect ratios. Tensile testing with pre-cut specimens showed that the vulcanizate containing A3-SBR was more cut-resistant than the one that did not contain A3-SBR, especially at a large cut size. The rolling resistance and wet skid were predicted by dynamic mechanical analysis (DMA). DMA tests showed that the vulcanizates containing A3-SBR were significantly less hysteretic at 60 °C and more hysteretic at 0 °C based on loss factor. Overall, the "magic triangle" was expanded by optimizing the rolling resistance, wet-skid, and cut resistance simultaneously using a ß-alanine trimer supramolecular filler. The Payne effect also became less severe after introducing the ß-alanine trimer supramolecular filler into the system.
RESUMEN
Graphene aerogels are emerging low density and superelasticity macroscopic porous materials with various applications. However, it still remains a challenge to develop a versatile strategy under ambient conditions for fabricating large-area, high-performance graphene aerogels, which is crucial for their practical applications. Here, we report a novel room-temperature reduction self-assembly (RTRS) strategy to fabricate large-area graphene aerogels under ambient conditions. The strategy is based on using unique hydrazine hydrates as reducing agents to generate stable microbubbles beneficial for the formation of macroporous graphene hydrogels. Interestingly, the resultant hydrogel followed by a simple pre-freeze treatment can be naturally dried into graphene aerogels without noticeable volume shrinkage or structure cracking. Benefiting from the mild conditions, a large-area graphene aerogel with a diameter of up to 27 cm was prepared as an example. The as-formed aerogels exhibit a stable honeycomb-like coarse-pores structure, a low density of 3.6 mg cm-3 and superelasticity (rapidly recoverable from 95% compression) which are suitable for pressure/strain sensors. Moreover, the aerogel exhibits superior particulate matter adsorption efficiency (PM2.5: 93.7%, PM10: 96.2%) and good recycling ability. Importantly, the preparation process is cost-effective and easily scalable without the need for any special drying techniques and heating processes, which provides an ideal platform for mass production of graphene aerogels toward practical applications.