Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 148(15): 3452-3459, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37366080

RESUMEN

With the development of new technologies for rapid and high-throughput bacterial detection, ATP-based bioluminescence technology is making progress. Because live bacteria contain ATP, the number of bacteria is correlated with the level of ATP under certain conditions, so that the method of luciferase catalyzing the fluorescence reaction of luciferin with ATP is widely used for the detection of bacteria. This method is easy to operate, has a short detection cycle, does not require much human resources, and is suitable for long-term continuous monitoring. Currently, other methods are being explored in combination with bioluminescence for more accurate, portable and efficient detection. This paper introduces the principle, development and application of bacterial bioluminescence detection based on ATP and compares the combination of bioluminescence and other bacterial detection methods in recent years. In addition, this paper also examines the development prospects and direction of bioluminescence in bacterial detection, hoping to provide a new idea for the application of ATP-based bioluminescence.


Asunto(s)
Adenosina Trifosfato , Mediciones Luminiscentes , Humanos , Mediciones Luminiscentes/métodos , Bacterias , Tecnología , Luciferinas
2.
Microbiol Spectr ; 12(8): e0397823, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38990030

RESUMEN

It is critical to develop quick, accurate, and efficient sterilization for detecting Escherichia coli O157:H7 in order to prevent infections and outbreaks of foodborne illnesses. Herein, we established a colorimetric biosensor with sterilizing properties using copper selenide nanoparticles to detect E. coli O157:H7. The sample was mixed with magnetic nanoprobes and nanozyme probes to form a sandwich structure, and then the unbound nanozyme probes were collected by magnetic separation. Finally, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)-hydrogen peroxide (H2O2) reporting system was added for signal amplification. The change from colorless to green can be seen with the naked eye. Under the optimal conditions, the detection range of E. coli O157:H7 was 102-106 CFU/mL, and the detection limit was 0.35 × 102 CFU/mL. The total detection time was 80 minutes, which can be successfully applied to milk and mineral water. In addition, the colorimetric sensor can kill the target bacteria by irradiating it under a 980-nm laser for 5 minutes. In conclusion, this sensor is a promising tool for rapidly detecting foodborne pathogens and promptly eliminating bacteria. IMPORTANCE: Escherichia coli O157:H7 is a major threat to public health. At present, the detection methods for E. coli O157:H7 mainly include traditional bacterial culture, immunology (enzyme-linked immune-sorbent assay) and molecular biology techniques (polymerase chain reaction). These methods have the limitations of professional operation, waste of time and energy, and high cost. Therefore, we have developed a simple, fast, bactericidal colorimetric biosensor to detect E. coli. O157:H7. The entire process was completed in 80 minutes. The method has been successfully applied to milk and mineral water samples with satisfactory results, proving that the method is an effective method for real-time detection and inactivation of bacteria.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Escherichia coli O157 , Microbiología de Alimentos , Escherichia coli O157/aislamiento & purificación , Colorimetría/métodos , Técnicas Biosensibles/métodos , Microbiología de Alimentos/métodos , Cobre , Leche/microbiología , Animales , Nanopartículas/química , Peróxido de Hidrógeno/farmacología
3.
Nutr Rev ; 82(5): 654-663, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37587082

RESUMEN

Studies have shown that exposure to fine particulate matter (PM2.5) affects various cells, systems, and organs in vivo and in vitro. PM2.5 adversely affects human health through mechanisms such as oxidative stress, inflammatory response, autophagy, ferroptosis, and endoplasmic reticulum stress. Phytochemicals are of interest for their broad range of physiological activities and few side effects, and, in recent years, they have been widely used to mitigate the adverse effects caused by PM2.5 exposure. In this review, the roles of various phytochemicals are summarized, including those of polyphenols, carotenoids, organic sulfur compounds, and saponin compounds, in mitigating PM2.5-induced adverse reactions through different molecular mechanisms, including anti-inflammatory and antioxidant mechanisms, inhibition of endoplasmic reticulum stress and ferroptosis, and regulation of autophagy. These are useful as a scientific basis for the prevention and treatment of disease caused by PM2.5.


Asunto(s)
Estrés Oxidativo , Material Particulado , Humanos , Material Particulado/toxicidad , Antioxidantes/farmacología , Autofagia/fisiología
4.
Foods ; 12(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38002125

RESUMEN

Today, with the globalization of the food trade progressing, food safety continues to warrant widespread attention. Foodborne diseases caused by contaminated food, including foodborne pathogens, seriously threaten public health and the economy. This has led to the development of more sensitive and accurate methods for detecting pathogenic bacteria. Many signal amplification techniques have been used to improve the sensitivity of foodborne pathogen detection. Among them, hybridization chain reaction (HCR), an isothermal nucleic acid hybridization signal amplification technique, has received increasing attention due to its enzyme-free and isothermal characteristics, and pathogenic bacteria detection methods using HCR for signal amplification have experienced rapid development in the last five years. In this review, we first describe the development of detection technologies for food contaminants represented by pathogens and introduce the fundamental principles, classifications, and characteristics of HCR. Furthermore, we highlight the application of various biosensors based on HCR nucleic acid amplification technology in detecting foodborne pathogens. Lastly, we summarize and offer insights into the prospects of HCR technology and its application in pathogen detection.

5.
Drug Des Devel Ther ; 15: 493-499, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33603339

RESUMEN

BACKGROUND: Nowadays, medical grade 316L stainless steel (316L SS) is being widely used for intravascular stents, and the drug-eluting stent (DES) system is able to significantly reduce the occurrences of in-stent restenosis. But the drugs and the polymer coating used in DES potentially induce the forming of late stent thrombosis. In order to reduce the occurrence of ISR after stent implantation, the development of novel drugs for DESs is urgently needed. METHODS: This study aimed to investigate the potential mechanisms of epigallocatechin-3-gallate (EGCG) on human umbilical vein endothelial cells (HUVEC) grown on 316L stainless steel (316L SS) using flow cytometry and Q-PCR methods. RESULTS: Our results showed that EGCG (12.5, 25, 50, 100 µmol/L) significantly inhibited HUVEC proliferation. Flow cytometry analysis indicated that EGCG (25, 50, 100 µmol/L) induced apoptosis. Moreover, qRT-PCRrevealed that genes associated with cell apoptosis (caspase-3, 8, 9, Fas) and autophagy (Atg 5, Atg 7, Atg 12) were up-regulated after EGCG treatment. CONCLUSION: These findings indicate that EGCG possesses chemo preventive potential in stent coating which may serve as a novel new drug for stent implantation.


Asunto(s)
Apoptosis/efectos de los fármacos , Catequina/análogos & derivados , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Acero Inoxidable/farmacología , Stents , Catequina/farmacología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
6.
Front Vet Sci ; 8: 771341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926642

RESUMEN

Brucellosis is a highly contagious zoonosis chronic infectious disease with a strong latent capability to endanger human health and economic development via direct or indirect ways. However, the existing methods for brucellosis diagnosis are time-consuming and expensive as they require a tedious experimental procedure and a sophisticated experimental device and performance. To overcome these defects, it is truly necessary to establish a real-time, on-site, and rapid detection method for human brucellosis. Here, a lateral flow immunoassay (LFIA) with a rapid, sensitive, and alternative diagnostic procedure for human brucellosis with a high degree of accuracy was developed based on blue silica nanoparticles (SiNPs), Staphylococcal protein A (SPA), and surface Lipopolysaccharide of Brucella spp. (LPS), which can be applied for rapid and feasible detection of human brucellosis. To our knowledge, this is the first report that uses blue SiNPs as a signal probe of LFIA for the rapid diagnosis of human brucellosis. The precursor of blue SiNPs@SPA such as colorless SiNPs and blue SiNPs was synthesized at first and then coupled with SPA onto the surface of blue SiNPs by covalent bond to prepare blue SiNPs@SPA as a capture signal to catch the antibody in the brucellosis-positive serum. When SPA was combined with the antibodies in the brucellosis-positive serum, it was captured by LPS on the test line, forming an antigen-antibody sandwich structure, resulting in the T line turning blue. Finally, the results showed that it is acceptable to use blue SiNPs as visible labels of LFIA, and standard brucellosis serum (containing Brucella spp. antibody at 1,000 IU/ml) could be detected at a dilution of 10-5 and the detection limit of this method was 0.01 IU/ml. Moreover, it also demonstrated good specificity and accuracy for the detection of real human serum samples. Above all, the blue SiNPs-based LFIA that we developed provides a rapid, highly accurate, and inexpensive on-site diagnosis of human brucellosis, and shows great promise in clinical diagnostics for other diseases.

7.
Food Sci Biotechnol ; 30(8): 1129-1138, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34471566

RESUMEN

This research aimed to detect Escherichia coli O157:H7 in milk based on immunomagnetic probe separation technology and quenching effect of gold nanoparticles to Rhodamine B. Streptavidin-modified magnetic beads (MBs) were combined with biotin-modified antibodies to capture E. coli O157:H7 specifically. Gold nanoparticle (AuNPs) was incubated with sulfhydryl-modified aptamers (SH-Aptamers) to obtain the Aptamers-AuNPs probe. After magnetic beads captured target bacteria and formed a sandwich structure with the gold nanoprobe, Rhodamine B was added into complex to obtain fluorescent signal changes. Our results demonstrated that the established method could detect E. coli O157:H7 in the range of 101-107 CFU/mL, and the limit of detection (LOD) was 0.35 CFU/mL in TBST buffer (pH = 7.4). In milk simulation samples, the LOD of this method was 1.03 CFU/mL. Our research provides a promising approach on the detection of E. coli O157:H7.

8.
Materials (Basel) ; 12(7)2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939746

RESUMEN

An automated corrosion monitor, named the Internet of Things atmospheric corrosion monitor (IoT ACM) has been developed. IoT ACM is based on electrical resistance sensor and enables accurate and continuous measurement of corrosion data of metallic materials. The objective of this research is to study the characteristics of atmospheric corrosion by analyzing the acquired corrosion data from IoT ACM. Employing data processing and data analysis methods to research the acquired corrosion data of steel, the atmospheric corrosion characteristics implied in the corrosion data can be discovered. Comparing the experiment results with the phenomenon of previous laboratory experiment and conclusions of previously published reports, the research results are tested and verified. The experiment results show that the change regulation of atmospheric corrosion data in the actual environment is reasonable and normal. The variation of corrosion depth is obviously influenced by relative humidity, temperature and part of air pollutants. It can be concluded that IoT ACM can be well applied to the conditions of atmospheric corrosion monitoring of metallic materials and the study of atmospheric corrosion by applying IoT ACM is effective and instructive under an actual atmospheric environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA