Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Plant J ; 118(4): 1207-1217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319793

RESUMEN

CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three ß82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and ß153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.


Asunto(s)
Proteínas Bacterianas , Ficobilinas , Ficobilisomas , Ficocianina , Synechocystis , Ficobilisomas/metabolismo , Ficocianina/metabolismo , Ficocianina/química , Synechocystis/metabolismo , Proteínas Bacterianas/metabolismo , Ficobilinas/metabolismo , Ficobilinas/química , Cianobacterias/metabolismo
2.
Biochemistry ; 63(9): 1225-1233, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38682295

RESUMEN

As plant photoreceptors, phytochromes are capable of detecting red light and far-red light, thereby governing plant growth. All2699 is a photoreceptor found in Nostoc sp. PCC7120 that specifically responds to red light and far-red light. All2699g1g2 is a truncated protein carrying the first and second GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains of All2699. In this study, we found that, upon exposure to red light, the protein underwent aggregation, resulting in the formation of protein aggregates. Conversely, under far-red light irradiation, these protein aggregates dissociated. We delved into the factors that impact the aggregation of All2699g1g2, focusing on the protein structure. Our findings showed that the GAF2 domain contains a low-complexity (LC) loop region, which plays a crucial role in mediating protein aggregation. Specifically, phenylalanine at position 239 within the LC loop region was identified as a key site for the aggregation process. Furthermore, our research revealed that various factors, including irradiation time, temperature, concentration, NaCl concentration, and pH value, can impact the aggregation of All2699g1g2. The aggregation led to variations in Pfr concentration depending on temperature, NaCl concentration, and pH value. In contrast, ΔLC did not aggregate and therefore lacked responses to these factors. Consequently, the LC loop region of All2699g1g2 extended and enhanced sensory properties.


Asunto(s)
Proteínas Bacterianas , Luz , Nostoc , Nostoc/metabolismo , Nostoc/química , Nostoc/efectos de la radiación , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Agregado de Proteínas , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Concentración de Iones de Hidrógeno , Fitocromo/química , Fitocromo/metabolismo
3.
Chembiochem ; 25(11): e202400068, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38623786

RESUMEN

Far-red and near-infrared fluorescent proteins have regions of maximum transmission in most tissues and can be widely used as fluorescent biomarkers. We report that fluorescent phycobiliproteins originating from the phycobilisome core subunit ApcF2 can covalently bind biliverdin, named BDFPs. To further improve BDFPs, we conducted a series of studies. Firstly, we mutated K53Q and T144A of BDFPs to increase their effective brightness up to 190 % in vivo. Secondly, by homochromatic tandem fusion of high-brightness BDFPs to achieve monomerization, which increases the effective brightness by up to 180 % in vivo, and can effectively improve the labeling effect. By combining the above two approaches, the brightness of the tandem BDFPs was much improved compared with that of the previously reported fluorescent proteins in a similar spectral range. The tandem BDFPs were expressed stably while maintaining fluorescence in mammalian cells and Caenorhabditis elegans. They were also photostable and resistant to high temperature, low pH, and chemical denaturation. The tandem BDFPs advantages were proved in applications as biomarkers for imaging in super-resolution microscopy.


Asunto(s)
Caenorhabditis elegans , Proteínas Luminiscentes , Animales , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Caenorhabditis elegans/metabolismo , Humanos , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Biliverdina/química , Biliverdina/metabolismo , Colorantes Fluorescentes/química , Células HEK293
4.
Photosynth Res ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38182842

RESUMEN

Far-red absorbing allophycocyanins (APC), identified in cyanobacteria capable of FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP), absorb far-red light, functioning in energy transfer as light-harvesting proteins. We report an optimized method to obtain high purity far-red absorbing allophycocyanin B, AP-B2, of Chroococcidiopsis thermalis sp. PCC7203 by synthesis in Escherichia coli and an improved purification protocol. The crystal structure of the trimer, (PCB-ApcD5/PCB-ApcB2)3, has been resolved to 2.8 Å. The main difference to conventional APCs absorbing in the 650-670 nm range is a largely flat chromophore with the co-planarity extending, in particular, from rings BCD to ring A. This effectively extends the conjugation system of PCB and contributes to the super-red-shifted absorption of the α-subunit (λmax = 697 nm). On complexation with the ß-subunit, it is even further red-shifted (λmax, absorption = 707 nm, λmax, emission = 721 nm). The relevance of ring A for this shift is supported by mutagenesis data. A variant of the α-subunit, I123M, has been generated that shows an intense FR-band already in the absence of the ß-subunit, a possible model is discussed. Two additional mechanisms are known to red-shift the chromophore spectrum: lactam-lactim tautomerism and deprotonation of the chromophore that both mechanisms appear inconsistent with our data, leaving this question unresolved.

5.
Biochemistry ; 62(13): 2021-2028, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37319348

RESUMEN

Liquid-liquid phase separation (LLPS) plays a key role in the regulation of life activities. Here, we reported a protein from Synechocystis sp. PCC 6803 and annotated as Slr0280. To obtain a water-soluble protein, we deleted the N-terminus transmembrane domain and named it Slr0280Δ. Slr0280Δ with high concentration can undergo LLPS at a low temperature in vitro. It belongs to the phosphodiester glycosidase family of proteins and has a segment of a low-complexity sequence region (LCR), which is thought to regulate the LLPS. Our results show that electrostatic interactions impact the LLPS of Slr0280Δ. We also acquired the structure of Slr0280Δ, which has many grooves on the surface with a large distribution of positive and negative charges. This may be advantageous for the LLPS of Slr0280Δ through electrostatic interactions. Furthermore, the conserved amino acid (arginine at position 531) located on the LCR is important for maintaining the stability of Slr0280Δ as well as LLPS. Our research indicated that the LLPS of proteins can be transformed into aggregation by changing the surface charge distribution.


Asunto(s)
Dominios Proteicos
6.
Chemistry ; 29(9): e202203367, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36382427

RESUMEN

Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, are a resource for photosynthetic, photonic and fluorescence labeling elements. They cover an exceptionally broad spectral range, but the complex superstructure and assembly have been an obstacle. By replacing in Synechocystis sp. PCC 6803 the biliverdin reductases, we studied the role of chromophores in the assembly of the phycobilisome core. Introduction of the green-absorbing phycoerythrobilin instead of the red-absorbing phycocyanobilin inhibited aggregation. A novel, trimeric allophycocyanin (Dic-APC) was obtained. In the small (110 kDa) unit, the two chromophores, phycoerythrobilin and phytochromobilin, cover a wide spectral range (550 to 660 nm). Due to efficient energy transfer, it provides an efficient artificial light-harvesting element. Dic-APC was generated in vitro by using the contained core-linker, LC , for template-assisted purification and assembly. Labeling the linker provides a method for targeting Dic-APC.


Asunto(s)
Cianobacterias , Fotosíntesis , Ficobilisomas/química , Ficobilisomas/metabolismo , Fluorescencia
7.
Proc Natl Acad Sci U S A ; 117(5): 2432-2440, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964827

RESUMEN

The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z dark-adapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to-Pg conversion as resulting from an out-of-plane rotation of the chromophore's peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantum-chemical calculations in the framework of multiscale modeling to rationalize the absorption maxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.


Asunto(s)
Proteínas Bacterianas/química , Fotorreceptores Microbianos/química , Ficobilinas/química , Ficocianina/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Luz , Modelos Moleculares , Procesos Fotoquímicos , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Conformación Proteica , Dominios Proteicos , Relación Estructura-Actividad , Synechocystis/química , Synechocystis/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(28): 16356-16362, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32591422

RESUMEN

Phytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the Z ⇄ E photoisomerization about the double bond in the bilin chromophore. However, it is not fully understood at the molecular level how the protein framework facilitates the complex photoisomerization dynamics. We have studied a single-domain bilin-binding photoreceptor All2699g1 (Nostoc sp. PCC 7120) that exhibits photoconversion between the red light-absorbing (Pr) and far red-absorbing (Pfr) states just like canonical phytochromes. We present the crystal structure and examine the photoisomerization mechanism of the Pr form as well as the formation of the primary photoproduct Lumi-R using time-resolved spectroscopy and hybrid quantum mechanics/molecular mechanics simulations. We show that the unusually long excited state lifetime (broad lifetime distribution centered at ∼300 picoseconds) is due to the interactions between the isomerizing pyrrole ring D and an adjacent conserved Tyr142. The decay kinetics shows a strongly distributed character which is imposed by the nonexponential protein dynamics. Our findings offer a mechanistic insight into how the quantum efficiency of the bilin photoisomerization is tuned by the protein environment, thereby providing a structural framework for engineering bilin-based optical agents for imaging and optogenetics applications.


Asunto(s)
Fitocromo/química , Fitocromo/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cristalografía por Rayos X , Isomerismo , Cinética , Modelos Moleculares , Nostoc/metabolismo , Procesos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
9.
Plant J ; 107(5): 1420-1431, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34171163

RESUMEN

The phycobilisomes (PBSs) of cyanobacteria and red-algae are unique megadaltons light-harvesting protein-pigment complexes that utilize bilin derivatives for light absorption and energy transfer. Recently, the high-resolution molecular structures of red-algal PBSs revealed how the multi-domain core-membrane linker (LCM ) specifically organizes the allophycocyanin subunits in the PBS's core. But, the topology of LCM in these structures was different than that suggested for cyanobacterial PBSs based on lower-resolution structures. Particularly, the model for cyanobacteria assumed that the Arm2 domain of LCM connects the two basal allophycocyanin cylinders, whereas the red-algal PBS structures revealed that Arm2 is partly buried in the core of one basal cylinder and connects it to the top cylinder. Here, we show by biochemical analysis of mutations in the apcE gene that encodes LCM , that the cyanobacterial and red-algal LCM topologies are actually the same. We found that removing the top cylinder linker domain in LCM splits the PBS core longitudinally into two separate basal cylinders. Deleting either all or part of the helix-loop-helix domain at the N-terminal end of Arm2, disassembled the basal cylinders and resulted in degradation of the part containing the terminal emitter, ApcD. Deleting the following 30 amino-acids loop severely affected the assembly of the basal cylinders, but further deletion of the amino-acids at the C-terminal half of Arm2 had only minor effects on this assembly. Altogether, the biochemical data are consistent with the red-algal LCM topology, suggesting that the PBS cores in cyanobacteria and red-algae assemble in the same way.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Modelos Moleculares , Ficobilisomas/química , Ficocianina/química , Synechocystis/genética , Proteínas Bacterianas/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Mutación , Ficobilisomas/metabolismo , Ficocianina/metabolismo , Dominios Proteicos , Rhodophyta , Synechocystis/química , Synechocystis/metabolismo
10.
Chembiochem ; 23(18): e202200267, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35811374

RESUMEN

Far-red and near-infrared fluorescent proteins can be used as fluorescence biomarkers in the region of maximal transmission of most tissues and facilitate multiplexing. Recently, we reported the generation and properties of far-red and near-infrared fluorescent phycobiliproteins, termed BeiDou Fluorescent Proteins (BDFPs), which can covalently bind the more readily accessible biliverdin. Far-red BDFPs maximally fluoresce at ∼670 nm, while near-infrared BDFPs fluoresce at ∼710 nm. In this work, we molecularly evolved BDFPs as follows: (a) mutations L58Q, S68R and M81K of BDFPs, which can maximally enhance the effective brightness in vivo by 350 %; (b) minimization and monomerization of far-red BDFPs 2.1, 2.2, 2.3, and near-infrared BDFPs 2.4, 2.5 and 2.6. These newly developed BDFPs are remarkably brighter than the formerly reported far-red and near-infrared fluorescent proteins. Their advantages are demonstrated by biolabeling in mammalian cells using super-resolution microscopy.


Asunto(s)
Biliverdina , Ficobiliproteínas , Animales , Proteínas Bacterianas/metabolismo , Biomarcadores , Colorantes Fluorescentes/metabolismo , Mamíferos/metabolismo , Microscopía Fluorescente , Ficobiliproteínas/metabolismo
11.
Plant J ; 102(3): 529-540, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31820831

RESUMEN

Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the ß-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.


Asunto(s)
Cianobacterias/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
12.
Biochemistry ; 59(22): 2047-2054, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32420731

RESUMEN

Phytochromes regulate central responses of plants and microorganisms such as shade avoidance and photosystem synthesis. Canonical phytochromes comprise a photosensory module of three domains. The C-terminal phytochrome-specific (PHY) domain interacts via a tongue element with the bilin chromophore in the central GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) domain. The bilin isomerizes upon illumination with red light, transforming the receptor from the Pr state to the Pfr state. The "knotless" phytochrome All2699 from the cyanobacterium Nostoc sp. PCC7120 comprises three GAF domains as a sensory module and a histidine kinase as an effector. GAF1 and GAF3 both bind a bilin, and GAF2 contains a tongue-like element. We studied the response of All2699, GAF1-GAF2, and GAF1 to red light by Fourier transform infrared difference spectroscopy, including a 13C-labeled protein moiety for assignment. In GAF1-GAF2, a refolding of the tongue from ß-sheet to α-helix and an upshift of the ring D carbonyl stretch from 1700 to 1712 cm-1 were observed. Therefore, GAF1-GAF2 is regarded as the smallest model system available to study the tongue response and interaction with the chromophore. Replacement of an arginine in the tongue with proline (R387P) did not affect the unfolding of the ß-sheet to Pfr but strongly impaired α-helix formation. In contrast, the Y55H mutation close to bilin ring D did not interfere with conversion to Pfr. Strikingly, the presence of GAF3 in the full-length All2699 diminished the response of the tongue and generated the signal pattern found for GAF1 alone. These results point to a regulatory or integrative role of GAF3 in All2699 that is absent in canonical phytochromes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Nostoc/química , Fitocromo/química , Fitocromo/metabolismo , Replegamiento Proteico , Proteínas Bacterianas/aislamiento & purificación , Modelos Moleculares , Nostoc/metabolismo , Fitocromo/aislamiento & purificación
13.
Chemistry ; 26(71): 17261-17266, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-32812681

RESUMEN

Phytochrome photoreceptors operate via photoisomerization of a bound bilin chromophore. Their typical architecture consists of GAF, PAS and PHY domains. Knotless phytochromes lack the PAS domain, while retaining photoconversion abilities, with some being able to photoconvert with just the GAF domain. Therefore, we investigated the ultrafast photoisomerization of the Pr state of a knotless phytochrome to reveal the effect of the PHY domain and its "tongue" region on the transduction of the light signal. We show that the PHY domain does not affect the initial conformational dynamics of the chromophore. However, it significantly accelerates the consecutively induced reorganizational dynamics of the protein, necessary for the progression of the photoisomerization. Consequently, the PHY domain keeps the bilin and its binding pocket in a more reactive conformation, which decreases the extent of protein reorganization required for the chromophore isomerization. Thereby, less energy is lost along nonproductive reaction pathways, resulting in increased efficiency.


Asunto(s)
Fitocromo , Proteínas Bacterianas/química , Conformación Molecular , Fitocromo/metabolismo
14.
Phys Chem Chem Phys ; 22(22): 12434-12446, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32458860

RESUMEN

Methylobacteria are facultative methylotrophic phytosymbionts of great industrial and agronomical interest, and they are considered as opportunistic pathogens posing a health threat to humans. So far only a few reports mention photoreceptor coding sequences in Methylobacteria genomes, but no investigation at the molecular level has been performed yet. We here present comprehensive in silico research into potential photoreceptors in this bacterial phylum and report the photophysical and photochemical characterisation of two representatives of the most widespread photoreceptor classes, a blue-light sensing LOV (light, oxygen, voltage) protein and a red/far red light sensing BphP (biliverdin-binding bacterial phytochrome) from M. radiotolerans JCM 2831. Overall, both proteins undergo the expected light-triggered reactions, but peculiar features were also identified. The LOV protein Mr4511 has an extremely long photocycle and lacks a tryptophan conserved in ca. 75% of LOV domains. Mutation I37V accelerates the photocycle by one order of magnitude, while the Q112W change underscores the ability of tryptophan in this position to perform efficient energy transfer to the flavin chromophore. Time-resolved photoacoustic experiments showed that Mr4511 has a higher triplet quantum yield than other LOV domains and that the formation of the photoproduct results in a volume expansion, in sharp contrast to other LOV proteins. Mr4511 was found to be astonishingly resistant to denaturation by urea, still showing light-triggered reactions after incubation in urea for more than 20 h. The phytochrome MrBphP1 exhibits the so far most red-shifted absorption maxima for its Pr- and Pfr forms (λmax = 707 nm and 764 nm for the Pr and Pfr forms). The light-driven conversions in both directions occur with relatively high quantum yields of 0.2. Transient ns absorption spectroscopy (µs-ms time range) identifies the decay of the instantaneously formed lumi-intermediate, followed by only one additional intermediate before the formation of the respective final photoproducts for Pr-to-Pfr or Pfr-to-Pr photoconversion, in contrast to other BphPs. The relatively simple photoconversion patterns suggest the absence of the shunt pathways reported for other bacterial phytochromes.


Asunto(s)
Proteínas Bacterianas/química , Luz , Methylobacterium/química , Fotorreceptores Microbianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional , Methylobacterium/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Espectrofotometría Ultravioleta
15.
Proc Natl Acad Sci U S A ; 114(50): 13170-13175, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29180420

RESUMEN

The light-harvesting phycobilisome in cyanobacteria and red algae requires the lyase-catalyzed chromophorylation of phycobiliproteins. There are three functionally distinct lyase families known. The heterodimeric E/F type is specific for attaching bilins covalently to α-subunits of phycocyanins and phycoerythrins. Unlike other lyases, the lyase also has chromophore-detaching activity. A subclass of the E/F-type lyases is, furthermore, capable of chemically modifying the chromophore. Although these enzymes were characterized >25 y ago, their structures remained unknown. We determined the crystal structure of the heterodimer of CpcE/F from Nostoc sp. PCC7120 at 1.89-Å resolution. Both subunits are twisted, crescent-shaped α-solenoid structures. CpcE has 15 and CpcF 10 helices. The inner (concave) layer of CpcE (helices h2, 4, 6, 8, 10, 12, and 14) and the outer (convex) layer of CpcF (h16, 18, 20, 22, and 24) form a cavity into which the phycocyanobilin chromophore can be modeled. This location of the chromophore is supported by mutations at the interface between the subunits and within the cavity. The structure of a structurally related, isomerizing lyase, PecE/F, that converts phycocyanobilin into phycoviolobilin, was modeled using the CpcE/F structure as template. A H87C88 motif critical for the isomerase activity of PecE/F is located at the loop between h20 and h21, supporting the proposal that the nucleophilic addition of Cys-88 to C10 of phycocyanobilin induces the isomerization of phycocyanobilin into phycoviolobilin. Also, the structure of NblB, involved in phycobilisome degradation could be modeled using CpcE as template. Combined with CpcF, NblB shows a low chromophore-detaching activity.


Asunto(s)
Proteínas Bacterianas/química , Liasas/química , Nostoc/enzimología , Proteínas Bacterianas/metabolismo , Liasas/metabolismo , Simulación de Dinámica Molecular , Ficobilinas/metabolismo , Ficocianina/metabolismo , Dominios Proteicos
16.
Proc Natl Acad Sci U S A ; 114(24): 6286-6291, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28559328

RESUMEN

Photoprotection is essential for efficient photosynthesis. Cyanobacteria have evolved a unique photoprotective mechanism mediated by a water-soluble carotenoid-based photoreceptor known as orange carotenoid protein (OCP). OCP undergoes large conformational changes in response to intense blue light, and the photoactivated OCP facilitates dissipation of excess energy via direct interaction with allophycocyanins at the phycobilisome core. However, the structural events leading up to the OCP photoactivation remain elusive at the molecular level. Here we present direct observations of light-induced structural changes in OCP captured by dynamic crystallography. Difference electron densities between the dark and illuminated states reveal widespread and concerted atomic motions that lead to altered protein-pigment interactions, displacement of secondary structures, and domain separation. Based on these crystallographic observations together with site-directed mutagenesis, we propose a molecular mechanism for OCP light perception, in which the photochemical property of a conjugated carbonyl group is exploited. We hypothesize that the OCP photoactivation starts with keto-enol tautomerization of the essential 4-keto group in the carotenoid, which disrupts the strong hydrogen bonds between the bent chromophore and the protein moiety. Subsequent structural changes trapped in the crystal lattice offer a high-resolution glimpse of the initial molecular events as OCP begins to transition from the orange-absorbing state to the active red-absorbing state.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Cristalografía , Modelos Moleculares , Conformación Proteica
17.
J Biol Chem ; 293(46): 17705-17715, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30242127

RESUMEN

Cyanobacteriochromes (CBCRs) are photochromic proteins in cyanobacteria that act as photosensors. CBCRs bind bilins as chromophores and sense nearly the entire visible spectrum of light, but the regulation of the chromophorylation of CBCRs is unknown. Slr1393 from Synechocystis sp. PCC 6803 is a CBCR containing three consecutive GAF (cGMP phosphodiesterase, adenylyl cyclase, and FhlA protein) domains, of which only the third one (Slr1393g3) can be phycocyanobilin-chromophorylated. The protein Slr2111 from Synechocystis sp. PCC 6803 includes a cystathionine ß-synthase (CBS) domain pair of an as yet unknown function at its N terminus. CBS domains are often characterized as sensors of cellular energy status by binding nucleotides. In this work, we demonstrate that Slr2111 strongly interacts with Slr1393 in vivo and in vitro, which generates a complex in a 1:1 molar ratio. This tight interaction inhibits the chromophorylation of Slr1393g3, even if the chromophore is present. Instead, the complex stability and thereby the chromophorylation of Slr1393 are regulated by the binding of nucleotides (ATP, ADP, AMP) to the CBS domains of Slr2111 with varying affinities. It is demonstrated that residues Asp-53 and Arg-97 of Slr2111 are involved in nucleotide binding. While ATP binds to Slr2111, the association between the two proteins gets weaker and chromophorylation of Slr1393 are enabled. In contrast, AMP binding to Slr2111 leads to a stronger association, thereby inhibiting the chromophorylation. It is concluded that Slr2111 acts as a sensor of the cellular energy status that regulates the chromophorylation of Slr1393 and thereby its function as a light-driven histidine kinase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Histidina Quinasa/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Synechocystis/química
18.
Chembiochem ; 20(9): 1167-1173, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30609201

RESUMEN

Phycobiliproteins are constituents of phycobilisomes that can harvest orange, red, and far-red light for photosynthesis in cyanobacteria and red algae. Phycobiliproteins in the phycobilisome cores, such as allophycocyanins, absorb far-red light to funnel energy to the reaction centers. Therefore, allophycocyanin subunits have been engineered as far-red fluorescent proteins, such as BDFP1.6. However, most current fluorescent probes have small Stokes shifts, which limit their applications in multicolor bioimaging. mCherry is an excellent fluorescent protein that has maximal emittance in the red spectral range and a high fluorescence quantum yield, and thus, can be used as a donor for energy transfer to a far-red acceptor, such as BDFP1.6, by FRET. In this study, mCherry was fused with BDFP1.6, which resulted in a highly bright far-red fluorescent protein, BDFP2.0, with a large Stokes shift (≈79 nm). The excitation energy was absorbed maximally at 587 nm by mCherry and transferred to BDFP1.6 efficiently; thus emitting strong far-red fluorescence maximally at 666 nm. The effective brightness of BDFP2.0 in mammalian cells was 4.2-fold higher than that of iRFP670, which has been reported as the brightest far-red fluorescent protein. The large Stokes shift of BDFP2.0 facilitates multicolor bioimaging. Therefore, BDFP2.0 not only biolabels mammalian cells, including human cells, but also biolabels various intracellular components in dual-color imaging.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Luminiscentes/química , Proteínas Recombinantes de Fusión/química , Proteínas Bacterianas/genética , Cianobacterias/química , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Microscopía Confocal , Microscopía Fluorescente , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/genética , Proteína Fluorescente Roja
19.
Chembiochem ; 20(21): 2777-2783, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31145526

RESUMEN

Biliproteins have extended the spectral range of fluorescent proteins into the far-red (FR) and near-infrared (NIR) regions. These FR and NIR fluorescent proteins are suitable for the bioimaging of mammalian tissues and are indispensable for multiplex labeling. Their application, however, presents considerable challenges in increasing their brightness, while maintaining emission in FR regions and oligomerization of monomers. Two fluorescent biliprotein triads, termed BDFP1.2/1.6:3.3:1.2/1.6, are reported. In mammalian cells, these triads not only have extremely high brightness in the FR region, but also have monomeric oligomerization. The BDFP1.2 and BDFP1.6 domains covalently bind to biliverdin, which is accessible in most cells. The BDFP3.3 domain noncovalently binds phycoerythrobilin that is added externally. A new method of replacing phycoerythrobilin with proteolytically digested BDFP3.3 facilitates this labeling. BDFP3.3 has a very high fluorescence quantum yield of 66 %, with maximal absorbance at λ=608 nm and fluorescence at λ=619 nm. In BDFP1.2/1.6:3.3:1.2/1.6, the excitation energy that is absorbed in the red region by phycoerythrobilin in the BDFP3.3 domain is transferred to biliverdin in the two BDFP1.2 or BDFP1.6 domains and fluoresces at λ≈670 nm. The combination of BDFP3.3 and BDFP1.2/1.6:3.3:1.2/1.6 can realize dual-color labeling. Labeling various proteins by fusion to these new fluorescent biliproteins is demonstrated in prokaryotic and mammalian cells.


Asunto(s)
Proteínas Bacterianas/química , Fluorescencia , Proteínas Luminiscentes/química , Ficobilinas/química , Ficobiliproteínas/química , Ficoeritrina/química , Coloración y Etiquetado/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , Dicroismo Circular/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Ficobilinas/genética , Ficobilinas/metabolismo , Ficobiliproteínas/genética , Ficobiliproteínas/metabolismo , Ficoeritrina/genética , Ficoeritrina/metabolismo , Espectrometría de Fluorescencia/métodos , Synechococcus/química , Synechococcus/genética , Synechococcus/metabolismo
20.
Protein Expr Purif ; 156: 66-71, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30629973

RESUMEN

Naturally-occurring orange carotenoid protein (OCP) is synthesized in cyanobacteria and red algae for photoprotection. Holo-OCP can be produced with three plasmids in E. coli, which needs two inducers (arabinose and isopropyl ß-D-thiogalactoside) to initiate two processes: one for generation of carotenoid and the other for generation of apo-OCP, so takes about two days. Afterwards, a two-plasmid method using two plasmids in E. coli is established, in which E. coli cells are induced only by isopropyl ß-D-thiogalactoside, so can yield different holo-OCPs from several cyanobacteria within three days. In this work, we optimized the two-plasmid method as follows: (1) re-organization of the two plasmids, letting carotenoid-generating gene, crtW, be arranged together with apo-OCP-generating gene, ocp, in a single plasmid, which causes that both carotenoid and apo-protein were properly produced, (2) modification of several amino acids at the N-terminus of apo-OCP, in this way increasing the yield and purity of holo-OCP. After these optimizations, we can generate much more amount of holo-OCP within shorter time of only 16 h, and pure holo-OCP be conveniently prepared after routine purification. Comparing with the reported data, the general yield of holo-OCP is increased by ∼10-fold under similar conditions. The high quality of the prepared holo-OCPs is verified by fluorescence quenching of the phycobilisomes.


Asunto(s)
Carotenoides/química , Proteínas Recombinantes , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA