Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Immunity ; 57(6): 1289-1305.e9, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38772366

RESUMEN

Adipose tissue group 2 innate lymphoid cells (ILC2s) help maintain metabolic homeostasis by sustaining type 2 immunity and promoting adipose beiging. Although impairment of the ILC2 compartment contributes to obesity-associated insulin resistance, the underlying mechanisms have not been elucidated. Here, we found that ILC2s in obese mice and humans exhibited impaired liver kinase B1 (LKB1) activation. Genetic ablation of LKB1 disrupted ILC2 mitochondrial metabolism and suppressed ILC2 responses, resulting in exacerbated insulin resistance. Mechanistically, LKB1 deficiency induced aberrant PD-1 expression through activation of NFAT, which in turn enhanced mitophagy by suppressing Bcl-xL expression. Blockade of PD-1 restored the normal functions of ILC2s and reversed obesity-induced insulin resistance in mice. Collectively, these data present the LKB1-PD-1 axis as a promising therapeutic target for the treatment of metabolic disease.


Asunto(s)
Tejido Adiposo , Homeostasis , Resistencia a la Insulina , Linfocitos , Mitocondrias , Obesidad , Receptor de Muerte Celular Programada 1 , Proteínas Serina-Treonina Quinasas , Animales , Resistencia a la Insulina/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Mitocondrias/metabolismo , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología , Obesidad/inmunología , Obesidad/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Inmunidad Innata , Masculino , Mitofagia/inmunología , Quinasas de la Proteína-Quinasa Activada por el AMP
2.
Front Immunol ; 15: 1402834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253083

RESUMEN

Introduction: Group 3 innate lymphoid cells (ILC3s) are enriched in the intestinal mucosa and play important roles in host defense against infection and inflammatory diseases. Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD+)- dependent deacetylase and has been shown to control intestinal epithelial cell differentiation and survival. However, the role of SIRT6 in ILC3s remains unknown. Methods: To investigate the role of SIRT6 in gut ILC3s, we generated SIRT6 conditional knockout mice by crossing Rorccre and Sirt6flox/flox mice. Cell number and cytokine production was examined using flow cytometry. Citrobacter rodentium infection and dextran sodium sulfate-induced colitis models were used to determine the role of SIRT6 in gut defense. RT-qPCR, flow cytometry and immunohistochemistry were used to assess the intestinal inflammatory responses. Results: Here we show that SIRT6 inhibits IL-22 expression in intestinal ILC3s in a cell-intrinsic manner. Deletion of SIRT6 in ILC3s does not affect the cell numbers of total ILC3s and subsets, but results in increased IL-22 production. Furthermore, ablation of SIRT6 in ILC3s protects mice against Citrobacter rodentium infection and dextran sodium sulfate-induced colitis. Our results suggest that SIRT6 may play a role in ILC3 function by regulating gut immune responses against bacterial infection and inflammation. Discussion: Our finding provided insight into the relation of epigenetic regulators with IL-22 production and supplied a new perspective for a potential strategy against inflammatory bowel disease.


Asunto(s)
Citrobacter rodentium , Colitis , Infecciones por Enterobacteriaceae , Inmunidad Innata , Interleucina-22 , Interleucinas , Linfocitos , Ratones Noqueados , Sirtuinas , Animales , Ratones , Citrobacter rodentium/inmunología , Colitis/inmunología , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/inmunología , Interleucinas/metabolismo , Interleucinas/inmunología , Interleucinas/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Sirtuinas/genética , Sirtuinas/metabolismo
3.
Cell Rep ; 43(5): 113579, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38670109

RESUMEN

Group 2 innate lymphoid cells (ILC2s) play crucial roles in mediating allergic inflammation. Recent studies also indicate their involvement in regulating tumor immunity. The tumor suppressor liver kinase B1 (LKB1) inactivating mutations are associated with a variety of human cancers; however, the role of LKB1 in ILC2 function and ILC2-mediated tumor immunity remains unknown. Here, we show that ablation of LKB1 in ILC2s results in an exhausted-like phenotype, which promotes the development of lung melanoma metastasis. Mechanistically, LKB1 deficiency leads to a marked increase in the expression of programmed cell death protein-1 (PD-1) in ILC2s through the activation of the nuclear factor of activated T cell pathway. Blockade of PD-1 can restore the effector functions of LKB1-deficient ILC2s, leading to enhanced antitumor immune responses in vivo. Together, our results reveal that LKB1 acts to restrain the exhausted state of ILC2 to maintain immune homeostasis and antitumor immunity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Inmunidad Innata , Linfocitos , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Ratones , Linfocitos/inmunología , Linfocitos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Receptor de Muerte Celular Programada 1/metabolismo , Humanos , Línea Celular Tumoral , Melanoma/inmunología , Melanoma/patología
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124387, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704999

RESUMEN

The development of tools that can provide a holistic picture of the evolution of the tumor microenvironment in response to intermittent fasting on the prevention of breast cancer is highly desirable. Here, we show, for the first time, the use of label-free Raman spectroscopy to reveal biomolecular alterations induced by intermittent fasting in the tumor microenvironment of breast cancer using a dimethyl-benzanthracene induced rat model. To quantify biomolecular alterations in the tumor microenvironment, chemometric analysis of Raman spectra obtained from untreated and treated tumors was performed using multivariate curve resolution-alternative least squares and support vector machines. Raman measurements revealed remarkable and robust differences in lipid, protein, and glycogen content prior to morphological manifestations in a dynamically changing tumor microenvironment, consistent with the proteomic changes observed by quantitative mass spectrometry. Taken together with its non-invasive nature, this research provides prospective evidence for the clinical translation of Raman spectroscopy to identify biomolecular variations in the microenvironment induced by intermittent fasting for the prevention of breast cancer, providing new perspectives on the specific molecular effects in the tumorigenesis of breast cancer.


Asunto(s)
Neoplasias de la Mama , Ayuno , Espectrometría Raman , Microambiente Tumoral , Espectrometría Raman/métodos , Animales , Femenino , Microambiente Tumoral/efectos de los fármacos , Neoplasias de la Mama/prevención & control , Neoplasias de la Mama/patología , Ratas , Modelos Animales de Enfermedad , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Neoplasias Mamarias Experimentales/prevención & control , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/patología , Ratas Sprague-Dawley , Ayuno Intermitente
5.
Genome Med ; 16(1): 60, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658971

RESUMEN

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Asunto(s)
Macrófagos , Tumores Neuroendocrinos , Neoplasias Hipofisarias , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/metabolismo , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/inmunología , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Fenotipo , Apoptosis/genética , Linaje de la Célula/genética
6.
Genome Med ; 16(1): 11, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217005

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NAC) has become a standard treatment strategy for breast cancer (BC). However, owing to the high heterogeneity of these tumors, it is unclear which patient population most likely benefit from NAC. Multi-omics offer an improved approach to uncovering genomic and transcriptomic changes before and after NAC in BC and to identifying molecular features associated with NAC sensitivity. METHODS: We performed whole-exome and RNA sequencing on 233 samples (including matched pre- and post-treatment tumors) from 50 BC patients with rigorously defined responses to NAC and analyzed changes in the multi-omics landscape. Molecular features associated with NAC response were identified and validated in a larger internal, and two external validation cohorts, as well as in vitro experiments. RESULTS: The most frequently altered genes were TP53, TTN, and MUC16 in both pre- and post-treatment tumors. In comparison with pre-treatment tumors, there was a significant decrease in C > A transversion mutations in post-treatment tumors (P = 0.020). NAC significantly decreased the mutation rate (P = 0.006) of the DNA repair pathway and gene expression levels (FDR = 0.007) in this pathway. NAC also significantly changed the expression level of immune checkpoint genes and the abundance of tumor-infiltrating immune and stroma cells, including B cells, activated dendritic cells, γδT cells, M2 macrophages and endothelial cells. Furthermore, there was a higher rate of C > T substitutions in NAC nonresponsive tumors than responsive ones, especially when the substitution site was flanked by C and G. Importantly, there was a unique amplified region at 8p11.23 (containing ADGRA2 and ADRB3) and a deleted region at 3p13 (harboring FOXP1) in NAC nonresponsive and responsive tumors, respectively. Particularly, the CDKAL1 missense variant P409L (p.Pro409Leu, c.1226C > T) decreased BC cell sensitivity to docetaxel, and ADGRA2 or ADRB3 gene amplifications were associated with worse NAC response and poor prognosis in BC patients. CONCLUSIONS: Our study has revealed genomic and transcriptomic landscape changes following NAC in BC, and identified novel biomarkers (CDKAL1P409L, ADGRA2 and ADRB3) underlying chemotherapy resistance and poor prognosis, which could guide the development of personalized treatments for BC.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Terapia Neoadyuvante , Células Endoteliales/metabolismo , Células Endoteliales/patología , Perfilación de la Expresión Génica , Genómica , Proteínas Represoras/genética , Factores de Transcripción Forkhead/genética , Receptores Adrenérgicos beta 3/genética
7.
J Mater Chem B ; 10(37): 7309-7327, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35730914

RESUMEN

Accurate monitoring of the biomolecular changes in biological and physiological environments is of great significance for the pathogenesis, development, diagnosis and treatment of diseases. Compared with traditional luminescent probes on the basis of an intensity-dependent single-channel readout, ratiometric fluorescence detection is a more reliable sensing or imaging method which can monitor different emission signals in two or more channels with a built-in self-calibration functionality, attracting growing attention in biomolecule detection. As a kind of luminescent material with many prospects, conjugated polymers with an easily functionalized organic molecular structure, high brightness, superior stability, tunable emission, and superior biocompatibility have been widely adopted as ratiometric fluorescent probes in biosensing and bioimaging. This review first summarizes the design principles of luminescent conjugated polymers that have been developed as methods for the ratiometric measurement of biomolecules. Additionally, their potential in accurate biodetection of living biosystems was investigated. This paper aims to provide a comprehensive review of the existing challenges and latest advancements in ratiometric detection of various biomolecules with high selectivity and sensitivity. We sincerely expect that the information presented in this review could inspire broader interests across various disciplines and stimulate more exciting achievements in biodetection for the benefit of biomedical research.


Asunto(s)
Colorantes Fluorescentes , Polímeros , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química
8.
Plants (Basel) ; 11(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893626

RESUMEN

Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman−Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019−2021) to model the effects on ET of eight meteorological factors (net solar radiation (Rn), mean temperature (Ta), minimum temperature (Tamin), maximum temperature (Tamax), relative humidity (RH), minimum relative humidity (RHmin), maximum relative humidity (RHmax), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that Rn, Ta, and Tamax were positively correlated with ET, and that Tamin, RH, RHmin, RHmax, and V were negatively correlated with ET. Rn had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET > GBR-ET > SVR-ET > ABR-ET > BR-ET > LR-ET > KNR-ET > RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was Rn > RH > RHmin> Tamax> RHmax> Tamin> Ta> V. Selecting Rn, RH, RHmin, Tamax, and Tamin as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program.

9.
Int J Biol Macromol ; 169: 436-442, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309668

RESUMEN

Recently, photo-degradation process under ultraviolet-light irradiation is being used as a substantial treatment method for the removal of environmental pollution. In this study, a silver phosphate-ilmenite (Ag3PO4-FeTiO3) hetero structure supported on glycol chitosan catalyst was completely prepared, also, and its structural, and optical properties were characterized. Meantime, scanning electron microscopy, X-ray diffraction, X-ray photoelectron, and UV-vis spectra were applied. The Ag3PO4-FeTiO3/glycol chitosan catalyst was used to degrade metronidazole under visible-light irradiation. The degradation rate of metronidazole in 25 min by Ag3PO4-FeTiO3/glycol chitosan nanocomposites was found to be 99.2% under UV light irradiation, which was higher than that by Ag3PO4-FeTiO3 (72.24%) and FeTiO3 (35.5%), respectively. The active species trapping test of Ag3PO4-FeTiO3/glycol chitosan indicated that ·OH and ·O2- participated during the reaction. The diffusion method was evaluated to appraise the bactericidal activity of the synthesized nanomaterials when tested against both Staphylococcus aureus and Escherichia coli bacteria, with or without LED-light irradiation. The antibacterial tests show higher inhibition zones under light illumination as compared to dark conditions. The antifungal properties of the prepared nanomaterials were analyzed by fungi (Aspergillus niger, and Fusarium solani) using disc diffusion analysis. It was confirmed that the prepared nanomaterials have the best antifungal agent as compared to the standard antibiotics. When the Ag3PO4-FeTiO3/glycol chitosan was used, the amount of inhibition zone was enhanced.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hierro/química , Fosfatos/química , Compuestos de Plata/química , Titanio/química , Antibacterianos/farmacología , Catálisis , Quitosano/química , Contaminantes Ambientales/química , Escherichia coli/efectos de los fármacos , Fusarium/efectos de los fármacos , Luz , Metronidazol/efectos adversos , Metronidazol/química , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Staphylococcus aureus/efectos de los fármacos
10.
Ultrasonics ; 116: 106478, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34174743

RESUMEN

Keratoconus, a serious corneal disorder, often causes highly irregular astigmatism and different degrees of visual impairment. Riboflavin/UVA corneal collagen cross-linking(CXL) is currently approved for effective treatment of keratoconus by enhancing the mechanical strength of collagen fibers in the cornea. However, few methods are capable of quantitatively and non-destructively assessing the mechanical properties of the cornea before and after CXL treatments. This study developed a corneal viscoelasticity imaging method based on comb-push ultrasound shear elastography (CUSE) and implemented this method on a Verasonics™ Vantage 256 ultrasound open system with a high-frequency linear array ultrasound transducer. Push beams were generated by three teeth each consisting of 10 elements (working frequency = 10.41 MHz) for inducing Lamb wave propagation in the cornea, and then the system immediately switched to the plane wave imaging mode using 60 elements in the middle (working frequency = 18 MHz). This method can provide a high-resolution 2D Lamb wave velocity image overlapping with a B-mode image as well as quantitative viscoelasticity estimation according to experimentally obtained phase velocity dispersion of Lamb waves. The validation experiments were performed on ex vivo porcine corneas, and the accuracy of elasticity estimation was verified by a tensile test. The results showed that the shear elasticity increased and the viscosity decreased after CXL treatment. The shear elasticity results (reported as mean ±â€¯standard deviation) of one control group with no CXL treatment and three CXL-treated groups named as 10 min, 30 min, and 60 min groups according to UV irradiation time were 14.62 ±â€¯3.38 kPa, 49.47 ±â€¯3.63 kPa, 116.54 ±â€¯23.99 kPa, and 197.89 ±â€¯39.64 kPa, respectively, which was in agreement with the results of tensile tests. The ultrasound safety measurement indicated that this method could have acceptable safety, but further to ocular tissue and vision function. The study demonstrated the possibility of using a commercial ultrasound system to obtain high-resolution images of corneal mechanical properties as well as the ability to quantify changes induced by CXL treatment. Therefore, the proposed method could serve as a helpful tool in the studies related in corneal biomechanics.

11.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(6): 650-656, 2019 Jun 30.
Artículo en Zh | MEDLINE | ID: mdl-31270042

RESUMEN

OBJECTIVE: To investigate the effect of medium-chain acyl-CoA dehydrogenase (ACADM) on invasion and metastasis of breast cancer cells and explore the underlying mechanism. METHODS: A large cancer genome database was used to analyze the expression of ACADM in breast cancer tissues and normal tissues. The proliferation, migration and invasion of cultured breast cancer MCF-7 and T47D cells with ACADM overexpression or ACADM silencing were evaluated using MTT proliferation assay, EdU assay, Transwell chamber assay, and Boyden invasion assay; Western blotting was used to detect the protein expressions of the related pathway in the cells. In nude mouse models of tail vein metastasis of MCF-7 cells with or without ACADM overexpression, the tumor growth and tumor histopathology were observed using HE staining. RESULTS: Analysis of the Oncomine sample set showed a significantly higher expression level of ACADM in breast cancer tissues than in normal breast tissues (P < 0.05). Overexpression of ACADM obviously enhanced the migration and invasion abilities and promoted the epithelial-mesenchymal transition (EMT) of cultured MCF-7 and T47D cells; conversely, silencing of ACADM significantly suppressed the migration and invasion of the breast cancer cells. In the nude mouse models, ACADM overexpression in MCF-7 cells significantly enhanced their in vivo migration and invasion abilities. CONCLUSIONS: ACADM can promote the EMT process of breast cancer cells and improve the migration and invasion ability. ACADM is an oncogene in breast cancer.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Acil-CoA Deshidrogenasa , Animales , Movimiento Celular , Proliferación Celular , Humanos , Células MCF-7 , Ratones
12.
Int J Clin Exp Med ; 8(11): 20946-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26885023

RESUMEN

Ischemic preconditioning (IPC) and remote ischemic precondition (RIPC) are resistance to ischemia-reperfusion (IR) injury. They have common protective mechanism. Cyclooxygenase (COX)-2 participate in the mechanism of IPC. So, the purpose of this study was to determine whether RIPC protects endothelial function of radial artery in human against IR and whether COX-2 involves in this effect. Endothelial IR injury was induced by arm ischemia (20 min) and reperfusion. Flow-mediated dilation (FMD) of the radial artery was measured before and after IR. RIPC (three 5-min cycles of ischemia of the contralateral arm) was applied immediately and 24 h before IR. All volunteers received the COX-2 inhibitor celecoxib (200 mg orally twice daily) for 5 days. On day 6, all subjects experienced the same studies as described. FMD was reduced by IR without administration of RIPC (P<0.0001). RIPC prevent this impairment of FMD immediately (P=NS) and at 24 h (P=NS). Nevertheless, the COX-2 inhibiter abolished protective effect of RIPC at 24 h (P=NS), but not immediately (P=0.001). After administration of the COX-2 inhibiter, post-IR FMD after RIPC performed immediately had significant increase than after RIPC performed at 24 h (P=0.001) and without administration of RIPC (P=0.003). The COX-2 inhibiter made post-IR FMD evidently decrease after RIPC performed at 24 h (P=0.002). RIPC prevents radial artery endothelial dysfunction induced by IR. This protective effect of RIPC in the late phase is mediated by a COX-2-dependent mechanism.

13.
PLoS One ; 6(11): e27540, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22132109

RESUMEN

Hematopoiesis is a complicated and dynamic process about which the molecular mechanisms remain poorly understood. Danio rerio (zebrafish) is an excellent vertebrate system for studying hematopoiesis and developmental mechanisms. In the previous study, we isolated and identified a cloche(172) (clo(172)) mutant, a novel allele compared to the original cloche (clo) mutant, through using complementation test and initial mapping. Here, according to whole mount in-situ hybridization, we report that the endothelial cells in clo(172) mutant embryos, although initially developed, failed to form the functional vascular system eventually. In addition, further characterization indicates that the clo(172) mutant exhibited weaker defects instead of completely lost in primitive erythroid cells and definitive hematopoietic cells compared with the clo(s5) mutant. In contrast, primitive myeloid cells were totally lost in clo(172) mutant. Furthermore, these reappeared definitive myeloid cells were demonstrated to initiate from the remaining hematopoietic stem cells (HSCs) in clo(172) mutant, confirmed by the dramatic decrease of lyc in clo(172)runx1(w84x) double mutant. Collectively, the clo(172) mutant is a weak allele compared to the clo(s5) mutant, therefore providing a model for studying the early development of hematopoietic and vascular system, as well as an opportunity to further understand the function of the cloche gene.


Asunto(s)
Alelos , Mutación/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , Linaje de la Célula/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Eritropoyesis/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hibridación in Situ , Mielopoyesis/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA