Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Cell ; 77(3): 656-668.e5, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004469

RESUMEN

Class B G protein-coupled receptors (GPCRs) are important therapeutic targets for major diseases. Here, we present structures of peptide and Gs-bound pituitary adenylate cyclase-activating peptide, PAC1 receptor, and corticotropin-releasing factor (CRF), (CRF1) receptor. Together with recently solved structures, these provide coverage of the major class B GPCR subfamilies. Diverse orientations of the extracellular domain to the receptor core in different receptors are at least partially dependent on evolutionary conservation in the structure and nature of peptide interactions. Differences in peptide interactions to the receptor core also influence the interlinked TM2-TM1-TM6/ECL3/TM7 domain, and this is likely important in their diverse signaling. However, common conformational reorganization of ECL2, linked to reorganization of ICL2, modulates G protein contacts. Comparison between receptors reveals ICL2 as a key domain forming dynamic G protein interactions in a receptor- and ligand-specific manner. This work advances our understanding of class B GPCR activation and Gs coupling.


Asunto(s)
Receptores de Hormona Liberadora de Corticotropina/ultraestructura , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/ultraestructura , Secuencia de Aminoácidos , Microscopía por Crioelectrón/métodos , Encefalinas , Humanos , Ligandos , Modelos Moleculares , Péptidos , Precursores de Proteínas , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Transducción de Señal
2.
Mol Cell ; 80(3): 485-500.e7, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027691

RESUMEN

Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes. High-resolution cryoelectron microscopy (cryo-EM) structures reveal that the binding sites for PF 06882961 and GLP-1 substantially overlap, whereas CHU-128 adopts a unique binding mode with a more open receptor conformation at the extracellular face. Structural differences involving extensive water-mediated hydrogen bond networks could be correlated to functional data to understand how PF 06882961, but not CHU-128, can closely mimic the pharmacological properties of GLP-1. These findings will facilitate rational structure-based discovery of non-peptide agonists targeting class B GPCRs.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Animales , Sitios de Unión/fisiología , Microscopía por Crioelectrón/métodos , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Humanos , Péptidos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
3.
Nature ; 577(7790): 432-436, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915381

RESUMEN

Class B G-protein-coupled receptors are major targets for the treatment of chronic diseases, including diabetes and obesity1. Structures of active receptors reveal peptide agonists engage deep within the receptor core, leading to an outward movement of extracellular loop 3 and the tops of transmembrane helices 6 and 7, an inward movement of transmembrane helix 1, reorganization of extracellular loop 2 and outward movement of the intracellular side of transmembrane helix 6, resulting in G-protein interaction and activation2-6. Here we solved the structure of a non-peptide agonist, TT-OAD2, bound to the glucagon-like peptide-1 (GLP-1) receptor. Our structure identified an unpredicted non-peptide agonist-binding pocket in which reorganization of extracellular loop 3 and transmembrane helices 6 and 7 manifests independently of direct ligand interaction within the deep transmembrane domain pocket. TT-OAD2 exhibits biased agonism, and kinetics of G-protein activation and signalling that are distinct from peptide agonists. Within the structure, TT-OAD2 protrudes beyond the receptor core to interact with the lipid or detergent, providing an explanation for the distinct activation kinetics that may contribute to the clinical efficacy of this compound series. This work alters our understanding of the events that drive the activation of class B receptors.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Isoquinolinas/farmacología , Fenilalanina/análogos & derivados , Piridinas/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Receptor del Péptido 1 Similar al Glucagón/química , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Isoquinolinas/química , Cinética , Modelos Moleculares , Fenilalanina/química , Fenilalanina/farmacología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Piridinas/química , Homología Estructural de Proteína
4.
Nat Chem Biol ; 18(3): 256-263, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34937906

RESUMEN

Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Exenatida , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Péptidos/química , Dominios Proteicos
5.
Nature ; 555(7694): 121-125, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29466332

RESUMEN

The class B glucagon-like peptide-1 (GLP-1) G protein-coupled receptor is a major target for the treatment of type 2 diabetes and obesity. Endogenous and mimetic GLP-1 peptides exhibit biased agonism-a difference in functional selectivity-that may provide improved therapeutic outcomes. Here we describe the structure of the human GLP-1 receptor in complex with the G protein-biased peptide exendin-P5 and a Gαs heterotrimer, determined at a global resolution of 3.3 Å. At the extracellular surface, the organization of extracellular loop 3 and proximal transmembrane segments differs between our exendin-P5-bound structure and previous GLP-1-bound GLP-1 receptor structure. At the intracellular face, there was a six-degree difference in the angle of the Gαs-α5 helix engagement between structures, which was propagated across the G protein heterotrimer. In addition, the structures differed in the rate and extent of conformational reorganization of the Gαs protein. Our structure provides insights into the molecular basis of biased agonism.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/ultraestructura , Sitios de Unión , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Humanos , Modelos Moleculares , Conformación Proteica
6.
Bioconjug Chem ; 34(6): 1014-1018, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37192432

RESUMEN

Exenatide was the first marketed GLP-1 receptor agonist for the treatment of type 2 diabetes. Modification to the chemical structure or the formulation has the potential to increase the stability of exenatide. We introduced human complex-type sialyloligosaccharide to exenatide at the native Asn28 position. The synthesis was achieved using both solid phase peptide synthesis (SPPS) and Omniligase-1-mediated chemoenzymatic ligation. The results demonstrate that glycosylation increases the proteolytic stability of exenatide while retaining its full biological activity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Exenatida , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes , Glicosilación , Péptido Hidrolasas , Receptor del Péptido 1 Similar al Glucagón/agonistas , Ponzoñas
7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897648

RESUMEN

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Péptido Intestinal Vasoactivo , Secuencia de Aminoácidos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Transducción de Señal , Péptido Intestinal Vasoactivo/metabolismo
8.
J Pharmacol Exp Ther ; 377(3): 417-440, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33727283

RESUMEN

Obesity and associated comorbidities are a major health burden, and novel therapeutics to help treat obesity are urgently needed. There is increasing evidence that targeting the amylin receptors (AMYRs), heterodimers of the calcitonin G protein-coupled receptor (CTR) and receptor activity-modifying proteins, improves weight control and has the potential to act additively with other treatments such as glucagon-like peptide-1 receptor agonists. Recent data indicate that AMYR agonists, which can also independently activate the CTR, may have improved efficacy for treating obesity, even though selective activation of CTRs is not efficacious. AM833 (cagrilintide) is a novel lipidated amylin analog that is undergoing clinical trials as a nonselective AMYR and CTR agonist. In the current study, we have investigated the pharmacology of AM833 across 25 endpoints and compared this peptide with AMYR selective and nonselective lipidated analogs (AM1213 and AM1784), and the clinically used peptide agonists pramlintide (AMYR selective) and salmon CT (nonselective). We also profiled human CT and rat amylin as prototypical selective agonists of CTR and AMYRs, respectively. Our results demonstrate that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation. SIGNIFICANCE STATEMENT: AM833 is a novel nonselective agonist of calcitonin family receptors that has demonstrated efficacy for the treatment of obesity in phase 2 clinical trials. This study demonstrates that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation when compared with other selective and nonselective calcitonin receptor and amylin receptor agonists. The present data provide mechanistic insight into the actions of AM833.


Asunto(s)
Calcitonina , Precursores de Proteínas , Animales , Masculino , Ratas , Receptores de Calcitonina
9.
Bioconjug Chem ; 32(10): 2148-2153, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34494823

RESUMEN

The current commercially available glucagon formulations for the treatment of severe hypoglycemia must be reconstituted immediately prior to use, owing to the susceptibility of glucagon to fibrillation and aggregation in an aqueous solution. This results in the inconvenience of handling, misuse, and wastage of this drug. To address these issues, we synthesized a glycosylated glucagon analogue in which the 25th residue (Trp) was replaced with a cysteine (Cys) and a Br-disialyloligosaccharide was conjugated at the Cys thiol moiety. The resulting analogue, glycoglucagon, is a highly potent full agonist at the glucagon receptor. Importantly, glycoglucagon exhibits markedly reduced propensity for fibrillation and enhanced thermal and metabolic stability. This novel analogue is thus a valuable lead for producing stable liquid glucagon formulations that will improve patient compliance and minimize wastage.


Asunto(s)
Glucagón , Hipoglucemia , Cisteína , Humanos
10.
Proc Natl Acad Sci U S A ; 115(31): E7438-E7447, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012612

RESUMEN

Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with ß-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.


Asunto(s)
Dolor Crónico/etiología , Endosomas/fisiología , Síndrome del Colon Irritable/fisiopatología , Receptor PAR-2/fisiología , Transducción de Señal/fisiología , Animales , Endocitosis , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Nocicepción , Nociceptores/fisiología , Tripsina/farmacología
11.
J Biol Chem ; 294(27): 10649-10662, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31142616

RESUMEN

Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and ß-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or ß-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gßγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gßγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gßγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteína Quinasa C/metabolismo , Receptor PAR-2/metabolismo , Animales , Catepsinas/metabolismo , Membrana Celular/metabolismo , Subunidades beta de la Proteína de Unión al GTP/antagonistas & inhibidores , Subunidades gamma de la Proteína de Unión al GTP/antagonistas & inhibidores , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patología , Hiperalgesia/prevención & control , Elastasa de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/antagonistas & inhibidores , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Receptor PAR-2/agonistas , Transducción de Señal/efectos de los fármacos , Xantenos/administración & dosificación , Xantenos/farmacología
12.
J Biol Chem ; 293(24): 9370-9387, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29717000

RESUMEN

G protein-coupled receptors (GPCRs) can be differentially activated by ligands to generate multiple and distinct downstream signaling profiles, a phenomenon termed biased agonism. The glucagon-like peptide-1 receptor (GLP-1R) is a class B GPCR and a key drug target for managing metabolic disorders; however, its peptide agonists display biased signaling that affects their relative efficacies. In this study, we combined mutagenesis experiments and mapping of surface mutations onto recently described GLP-1R structures, which revealed two major domains in the GLP-1/GLP-1R/Gs protein active structure that are differentially important for both receptor quiescence and ligand-specific initiation and propagation of biased agonism. Changes to the conformation of transmembrane helix (TM) 5 and TM 6 and reordering of extracellular loop 2 were essential for the propagation of signaling linked to cAMP formation and intracellular calcium mobilization, whereas ordering and packing of residues in TMs 1 and 7 were critical for extracellular signal-regulated kinase 1/2 (pERK) activity. On the basis of these findings, we propose a model of distinct peptide-receptor interactions that selectively control how these different signaling pathways are engaged. This work provides important structural insight into class B GPCR activation and biased agonism.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Péptidos/farmacología , Animales , Células CHO , Calcio/metabolismo , Cricetulus , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Descubrimiento de Drogas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Receptor del Péptido 1 Similar al Glucagón/química , Receptor del Péptido 1 Similar al Glucagón/genética , Humanos , Ligandos , Modelos Moleculares , Mutagénesis , Péptidos/metabolismo , Fosforilación , Conformación Proteica , Dominios Proteicos
13.
J Biol Chem ; 291(21): 11285-99, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27030010

RESUMEN

Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gßγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gßγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gßγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gßγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteína Quinasa C/metabolismo , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Señalización del Calcio , Línea Celular , Membrana Celular/metabolismo , Endosomas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/antagonistas & inhibidores , Subunidades gamma de la Proteína de Unión al GTP/antagonistas & inhibidores , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Ratas , Xantenos/farmacología
14.
J Biol Chem ; 290(22): 13875-87, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25878251

RESUMEN

Proteases that cleave protease-activated receptor-2 (PAR(2)) at Arg(36)↓Ser(37) reveal a tethered ligand that binds to the cleaved receptor. PAR(2) activates transient receptor potential (TRP) channels of nociceptive neurons to induce neurogenic inflammation and pain. Although proteases that cleave PAR(2) at non-canonical sites can trigger distinct signaling cascades, the functional importance of the PAR(2)-biased agonism is uncertain. We investigated whether neutrophil elastase, a biased agonist of PAR(2), causes inflammation and pain by activating PAR2 and TRP vanilloid 4 (TRPV4). Elastase cleaved human PAR(2) at Ala(66)↓Ser(67) and Ser(67)↓Val(68). Elastase stimulated PAR(2)-dependent cAMP accumulation and ERK1/2 activation, but not Ca(2+) mobilization, in KNRK cells. Elastase induced PAR(2) coupling to Gαs but not Gαq in HEK293 cells. Although elastase did not promote recruitment of G protein-coupled receptor kinase-2 (GRK(2)) or ß-arrestin to PAR(2), consistent with its inability to promote receptor endocytosis, elastase did stimulate GRK6 recruitment. Elastase caused PAR(2)-dependent sensitization of TRPV4 currents in Xenopus laevis oocytes by adenylyl cyclase- and protein kinase A (PKA)-dependent mechanisms. Elastase stimulated PAR(2)-dependent cAMP formation and ERK1/2 phosphorylation, and a PAR(2)- and TRPV4-mediated influx of extracellular Ca(2+) in mouse nociceptors. Adenylyl cyclase and PKA-mediated elastase-induced activation of TRPV4 and hyperexcitability of nociceptors. Intraplantar injection of elastase to mice caused edema and mechanical hyperalgesia by PAR(2)- and TRPV4-mediated mechanisms. Thus, the elastase-biased agonism of PAR(2) causes Gαs-dependent activation of adenylyl cyclase and PKA, which activates TRPV4 and sensitizes nociceptors to cause inflammation and pain. Our results identify a novel mechanism of elastase-induced activation of TRPV4 and expand the role of PAR(2) as a mediator of protease-driven inflammation and pain.


Asunto(s)
Inflamación/metabolismo , Elastasa de Leucocito/metabolismo , Dolor/metabolismo , Receptor PAR-2/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Edema/metabolismo , Edema/patología , Proteínas de Unión al GTP/metabolismo , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Nocicepción , Oocitos/citología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Péptido Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Xenopus laevis/metabolismo
15.
J Biol Chem ; 289(39): 27215-27234, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25118282

RESUMEN

Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R(36)↓S(37) and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E(56)↓T(57), which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca(2+), activate ERK1/2, recruit ß-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain.


Asunto(s)
Catepsinas/metabolismo , Dolor , Receptor PAR-2 , Canales Catiónicos TRPV , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Catepsinas/genética , Células HEK293 , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados , Dolor/genética , Dolor/metabolismo , Dolor/patología , Receptor PAR-2/agonistas , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Xenopus laevis
16.
Gastroenterology ; 147(6): 1417-28, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25194674

RESUMEN

BACKGROUND & AIMS: Patients with cholestatic disease have increased systemic concentrations of bile acids (BAs) and profound pruritus. The G-protein-coupled BA receptor 1 TGR5 (encoded by GPBAR1) is expressed by primary sensory neurons; its activation induces neuronal hyperexcitability and scratching by unknown mechanisms. We investigated whether the transient receptor potential ankyrin 1 (TRPA1) is involved in BA-evoked, TGR5-dependent pruritus in mice. METHODS: Co-expression of TGR5 and TRPA1 in cutaneous afferent neurons isolated from mice was analyzed by immunofluorescence, in situ hybridization, and single-cell polymerase chain reaction. TGR5-induced activation of TRPA1 was studied in in HEK293 cells, Xenopus laevis oocytes, and primary sensory neurons by measuring Ca(2+) signals. The contribution of TRPA1 to TGR5-induced release of pruritogenic neuropeptides, activation of spinal neurons, and scratching behavior were studied using TRPA1 antagonists or Trpa1(-/-) mice. RESULTS: TGR5 and TRPA1 protein and messenger RNA were expressed by cutaneous afferent neurons. In HEK cells, oocytes, and neurons co-expressing TGR5 and TRPA1, BAs caused TGR5-dependent activation and sensitization of TRPA1 by mechanisms that required Gßγ, protein kinase C, and Ca(2+). Antagonists or deletion of TRPA1 prevented BA-stimulated release of the pruritogenic neuropeptides gastrin-releasing peptide and atrial natriuretic peptide B in the spinal cord. Disruption of Trpa1 in mice blocked BA-induced expression of Fos in spinal neurons and prevented BA-stimulated scratching. Spontaneous scratching was exacerbated in transgenic mice that overexpressed TRG5. Administration of a TRPA1 antagonist or the BA sequestrant colestipol, which lowered circulating levels of BAs, prevented exacerbated spontaneous scratching in TGR5 overexpressing mice. CONCLUSIONS: BAs induce pruritus in mice by co-activation of TGR5 and TRPA1. Antagonists of TGR5 and TRPA1, or inhibitors of the signaling mechanism by which TGR5 activates TRPA1, might be developed for treatment of cholestatic pruritus.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colestasis/metabolismo , Prurito/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Colestasis/complicaciones , Modelos Animales de Enfermedad , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Péptido Liberador de Gastrina/metabolismo , Células HEK293 , Humanos , Ratones Noqueados , Péptidos Natriuréticos/metabolismo , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Nociceptores/metabolismo , Oocitos/citología , Oocitos/metabolismo , Cultivo Primario de Células , Prurito/etiología , Receptores Acoplados a Proteínas G/genética , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética , Xenopus laevis
17.
Mol Cell Biochem ; 405(1-2): 33-40, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25842189

RESUMEN

Heterotrimeric G protein signaling is limited by intracellular proteins that impede the binding of or accelerate the hydrolysis of the activating nucleotide GTP, exemplified respectively by the G protein-signaling modifier (GPSM) and regulator of G protein-signaling (RGS) families of proteins. Little is known about how members of these groups of proteins might influence the impact of the other on G protein activity. In the present study, we have identified novel binding and functional interactions between GPSM3 (also known as activator of G protein-signaling 4 (AGS4) or G18) and RGS5, both of which were found to be expressed in primary rat aortic smooth muscle cell cultures. The binding of GPSM3 to RGS5 appears to be selective as no interactions were detected with other RGS proteins tested. In solution-based experiments, the addition of GPSM3 was found to enhance the ability of RGS5 to accelerate GTP hydrolysis by Gαi1 but not that of RGS4. In membrane-based assays utilizing M2 muscarinic receptor-activated Gαi1, GPSM3 decreased the rate of GTP hydrolysis in the presence of RGS4 but not RGS5, suggesting that the enhancement of RGS5 activity by GPSM3 is maintained under these conditions and/or that the binding of RGS5 to GPSM3 impedes its inhibitory effect on GTP turnover. Overall these findings show that it is possible for GPSM and RGS proteins to bind to one another to produce distinct regulatory effects on heterotrimeric G protein activity.


Asunto(s)
Reguladores de Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas RGS/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , Guanosina Trifosfato/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Unión Proteica/fisiología , Ratas , Ratas Endogámicas WKY , Transducción de Señal/fisiología
18.
J Biol Chem ; 288(36): 25689-25700, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23913690

RESUMEN

Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with ß-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and ß-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/ß-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from ß-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained ß-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Neuronas/metabolismo , Proteolisis , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/metabolismo , Somatostatina-28/metabolismo , Somatostatina/metabolismo , Animales , Arrestinas/genética , Arrestinas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Línea Celular Tumoral , Endosomas/genética , Endosomas/metabolismo , Enzimas Convertidoras de Endotelina , Femenino , Fármacos Gastrointestinales/farmacología , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Masculino , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Ratones , Octreótido/farmacocinética , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Receptores de Somatostatina/genética , Somatostatina/genética , Somatostatina-28/genética , beta-Arrestinas
19.
Biochem Pharmacol ; 223: 116130, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490518

RESUMEN

Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-ß1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-ß1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/ß-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-ß1 in the progression of fibrosis, and how the Wnt/ß-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-ß1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-ß1 and Wnt/ß-catenin signaling, but through the promotion of Wnt/ß-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-ß1 signal transduction and the Wnt/ß-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.


Asunto(s)
Relaxina , Humanos , Relaxina/uso terapéutico , beta Catenina/metabolismo , Enfermedad Aguda , Vía de Señalización Wnt , Factor de Crecimiento Transformador beta1 , Fibrosis
20.
Biochem Pharmacol ; 222: 116119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461904

RESUMEN

The glucagon-like peptide 1 receptor (GLP-1R) is a validated clinical target for the treatment of type 2 diabetes and obesity. Unlike most G protein-coupled receptors (GPCRs), the GLP-1R undergoes an atypical mode of internalisation that does not require ß-arrestins. While differences in GLP-1R trafficking and ß-arrestin recruitment have been observed between clinically used GLP-1R agonists, the role of G protein-coupled receptor kinases (GRKs) in affecting these pathways has not been comprehensively assessed. In this study, we quantified the contribution of GRKs to agonist-mediated GLP-1R internalisation and ß-arrestin recruitment profiles using cells where endogenous ß-arrestins, or non-visual GRKs were knocked out using CRISPR/Cas9 genome editing. Our results confirm the previously established atypical ß-arrestin-independent mode of GLP-1R internalisation and revealed that GLP-1R internalisation is dependent on the expression of GRKs. Interestingly, agonist-mediated GLP-1R ß-arrestin 1 and ß-arrestin 2 recruitment were differentially affected by endogenous GRK knockout with ß-arrestin 1 recruitment more sensitive to GRK knockout than ß-arrestin 2 recruitment. Moreover, individual overexpression of GRK2, GRK3, GRK5 or GRK6 in a newly generated GRK2/3/4/5/6 HEK293 cells, rescued agonist-mediated ß-arrestin 1 recruitment and internalisation profiles to similar levels, suggesting that there is no specific GRK isoform that drives these pathways. This study advances mechanistic understanding of agonist-mediated GLP-1R internalisation and provides novel insights into how GRKs may fine-tune GLP-1R signalling.


Asunto(s)
Diabetes Mellitus Tipo 2 , Quinasas de Receptores Acoplados a Proteína-G , Humanos , Arrestinas/genética , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , beta-Arrestinas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células HEK293 , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA