Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Pulm Pharmacol Ther ; 84: 102285, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191069

RESUMEN

Pulmonary fibrosis is a complex disease that can occur in a variety of clinical settings. The Zinc Finger and BTB Domain Containing 16 (Zbtb16) is a transcription factor and has not been studied in pulmonary fibrosis. Lung tissues from rats which were treated with bleomycin and Tanshinone IIA (Tan IIA) were collected for mRNA sequencing. Zbtb16, a differentially expressed gene, was screened. Using adeno-associated virus to knock down Zbtb16 in rats, it was found that the lung index and the content of hydroxyproline in lung tissue were decreased. HE and Masson staining revealed that pathological symptoms of lung histopathology were relieved after Zbtb16 knockdown. Protein expressions of α-SMA, Collagen I and Fibronectin were significantly decreased after Zbtb16 knockdown in vivo and in vitro. Meanwhile, the protein content of TGF-ß1 and the phosphorylation of Smad2/3 were inhibited by Zbtb16 knockdown. Conversely, under the treatment of Tan IIA and TGF-ß1, overexpression of Zbtb16 improved cell viability, increased the expression of fibrosis-related proteins, and promoted the phosphorylation of Smad 2/3. All above demonstrates that Zbtb16 inhibition ameliorates pulmonary fibrosis and suppresses the TGF-ß/Smad pathway. Furthermore, Zbtb16 mediates the inhibitory process of Tan IIA on pulmonary fibrosis. This study provides a novel candidate therapeutic target for pulmonary fibrosis.


Asunto(s)
Abietanos , Fibrosis Pulmonar , Animales , Ratas , Bleomicina/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
2.
Physiol Plant ; 175(1): e13859, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36688571

RESUMEN

Chaenomeles speciosa is a plant with high ornamental value, and the color of its petals deepens obviously under drought stress. To understand the mechanism of drought-induced reddening of C. speciosa petal color, the metabolites and transcriptomics of petals from 4% PEG-8000-treated and control cuttings were analyzed. In this study, the analysis of metabolites revealed the accumulation of anthocyanins in petals of PEG-treated cuttings, indicating anthocyanins might be the reason for the deepening of petal color. By using transcriptomics, we identified CsMYB6 as an overexpressed transcription factor in PEG-treated samples. Transient overexpression and suppression of CsMYB6 revealed that it is a key transcription factor for anthocyanin synthesis. We identified genes related to anthocyanin biosynthesis and constructed a network of drought- and anthocyanin-related genes (such as CsMYB6, CsbHLH111, CsANS, CsDFR, and CsUFGT). Further experiments indicated that CsMYB6 directly interacted with CsbHLH111, and this interaction increased the binding ability of CsMYB6 to the promoter regions of three structural genes of anthocyanin biosynthesis: CsANS, CsDFR, and CsUFGT. Our findings provide a molecular basis and new insight into drought-induced anthocyanin biosynthesis in C. speciosa.


Asunto(s)
Antocianinas , Rosaceae , Antocianinas/metabolismo , Sequías , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Rosaceae/genética , Rosaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Flores/genética
3.
BMC Pediatr ; 23(1): 233, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173706

RESUMEN

BACKGROUND: The hypereosinophilic syndrome (HES) is a group of rare blood disorders characterized by persistent eosinophilia and damage to multiple organs. HES can be either primary, secondary or idiopathic. Secondary HES are commonly caused by parasitic infections, allergic reactions or cancer. We described a pediatric case of HES associated with liver damage and multiple thrombi. A 12-year-old boy with eosinophilia was complicated with severe thrombocytopenia, liver damage, portal vein, splenic vein, and superior mesenteric vein thromboses. The thrombi recanalized after treatment with methylprednisolone succinate and low molecular weight heparin. No side effects appeared after 1-month. CONCLUSIONS: Corticosteroids should be used at an early stage of HES to prevent further damage to vital organs. Anticoagulants should be recommended only in cases with thrombosis which should be actively screened as a part of evaluation of end organ damage.


Asunto(s)
Síndrome Hipereosinofílico , Hepatopatías , Trombosis , Masculino , Humanos , Niño , Vena Porta/diagnóstico por imagen , Vena Esplénica/diagnóstico por imagen , Venas Mesentéricas/diagnóstico por imagen , Trombosis/etiología , Síndrome Hipereosinofílico/complicaciones , Síndrome Hipereosinofílico/diagnóstico , Síndrome Hipereosinofílico/tratamiento farmacológico
4.
Chem Rec ; 22(2): e202100218, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34618405

RESUMEN

The formation of intramolecular C-N bond represents a powerful strategy in organic transformation as the great importance of N-heterocycles in the fields of natural products and bioactive molecules. This personal account describes the synthesis of cyclic phosphinamidation, benzosultam, benzosulfoximine, phenanthridine and their halogenated compounds through transition-metal-free intramolecular oxidative C-N bond formation. Mechanism study reveals that N-X bond is initially formed under the effect of hypervalent halogen, which is very unstable and easily undergoes thermal or light homolytic cleavage to generate nitrogen radical. Then the nitrogen radical is trapped by the arene to give aryl radical. Rearomatization of aryl radical under the oxidant to provide corresponding N-heterocycle. Under suitable conditions, the N-heterocycles can be further transformed to halogenated N-heterocycles.


Asunto(s)
Elementos de Transición , Metales , Oxidación-Reducción
5.
BMC Gastroenterol ; 21(1): 416, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724892

RESUMEN

BACKGROUND: MKI67 plays a vital role in the tumour microenvironment (TME) and congenital immunity. The present work focuses on exploring the prognosis prediction performance of MKI67 and its associations with T cell activity and immune infiltration within numerous cancers, especially hepatocellular liver carcinoma (LIHC). METHODS: Oncomine, GEPIA2, and HPA were adopted to analyse MKI67 levels in different types of cancers. The prognostic prediction performance of MKI67 was evaluated through the TCGA portal, GEPIA2, LOGpc, and Kaplan-Meier Plotter databases. The associations of MKI67 with related gene marker sets and immune infiltration were inspected through TISIDB, GEPIA2, and TIMER. We chose MKI67 to analyse biological processes (BPs) and KEGG pathways related to the coexpressed genes. Furthermore, the gene-miRNA interaction network for MKI67 in liver cancer was also examined based on the miRWalk database. RESULTS: MKI67 expression decreased in many cancers related to the dismal prognostic outcome of LIHC. We found that MKI67 significantly affected the prognosis of LIHC in terms of histology and grade. Increased MKI67 levels were directly proportional to the increased immune infiltration degrees of numerous immune cells and functional T cells, such as exhausted T cells. In addition, several critical genes related to exhausted T cells, including TIM-3, TIGIT, PD-1, LAG3, and CXCL13, were strongly related to MKI67. Further analyses showed that MKI67 was associated with adaptive immunity, cell adhesion molecules (CAMs), and chemokine/immune response signal transduction pathways. CONCLUSION: MKI67 acts as a prognostic prediction biomarker in several cancers, particularly LIHC. Upregulation of MKI67 elevates the degree of immune infiltration of many immune cell subtypes, including functional T cells, CD4+ T cells, and CD8+ T cells. Furthermore, MKI67 shows a close correlation with T cell exhaustion, which plays a vital role in promoting T cell exhaustion within LIHC. Detection of the MKI67 level contributes to prognosis prediction and MKI67 modulation within exhausted T cells, thus providing a new method to optimize the efficacy of anti-LIHC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos , Humanos , Pronóstico , Microambiente Tumoral
6.
Angew Chem Int Ed Engl ; 58(11): 3268-3278, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30353633

RESUMEN

A number of recently discovered nucleophilic boron compounds, such as boryl anions and borylenes, are breaking the rules regarding boron and boron-containing compounds and their reputation as Lewis acids/electrophiles. In a similar fashion, the B-H bonding pair electrons in boranes also show nucleophilicity which is ascribed to the lower electronegativity of boron relative to that of hydrogen. However, this nucleophilicity of the B-H bond has received far less attention. Explorations of the nucleophilicity of the B-H bonding pair electrons have led to the formation of B-H-B bonded units and B-H⋅⋅⋅H-Y dihydrogen bonds, based on which new chemistry has been uncovered, including the elucidation of the mechanism of formation of aminodiborane (ADB), the diammoniate of diborane (DADB), and lithium or sodium salts of octahydrotriborates (B3 H8 - ), as well as the development of more convenient and straightforward synthetic routes to these reagents. Moreover, the recognition of the nucleophilic properties of the B-H bonding pair electrons will also help to more deeply understand the different mechanisms operating in hydroboration reactions.

7.
J Org Chem ; 83(24): 14969-14977, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30353732

RESUMEN

In contrast to the conventional strategy of modifying the reactivities and selectivities of the transition metal and organocatalysts by varying the steric and electronic properties of organic substituent groups, we hereby demonstrate a novel approach that the sigma (σ) nucleophilicity of the imine arm can be significantly enhanced in a pseudodearomatized PN3P* pincer ligand platform to reach unprecedented N-heterocyclic carbene-like reactivity. Accordingly, the imine arm of the PN3P*Ni-H pincer complex efficiently catalyzes the hydrosilylation of aldehydes, cycloaddition of carbon dioxide (CO2) to epoxides, and serves as a ligand in the Ru-catalyzed dehydrogenative acylation of amines with alcohols.

8.
J Am Chem Soc ; 137(38): 12406-14, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26335760

RESUMEN

A facile synthesis of cyclic aminodiborane (NH2B2H5, ADB) from ammonia borane (NH3·BH3, AB) and THF·BH3 has made it possible to determine its important characteristics. Ammonia diborane (NH3BH2(µ-H)BH3, AaDB) and aminoborane (NH2BH2, AoB) were identified as key intermediates in the formation of ADB. Elimination of molecular hydrogen occurred from an ion pair, [H2B(NH3) (THF)](+)[BH4](-). Protic-hydridic hydrogen scrambling was proved on the basis of analysis of the molecular hydrogen products, ADB and other reagents through (2)H NMR and MS, and it was proposed that the scrambling occurred as the ion pair reversibly formed a BH5-like intermediate, [(THF)BH2NH2](η(2)-H2)BH3. Loss of molecular hydrogen from the ion pair led to the formation of AoB, most of which was trapped by BH3 to form ADB with a small amount oligomerizing to (NH2BH2)n. Theoretical calculations showed the thermodynamic feasibility of the proposed intermediates and the activation processes. The structure of the ADB·THF complex was found from X-ray single crystal analysis to be a three-dimensional array of zigzag chains of ADB and THF, maintained by hydrogen and dihydrogen bonding. Room temperature exchange of terminal and bridge hydrogens in ADB was observed in THF solution, while such exchange was not observed in diethyl ether or toluene. Both experimental and theoretical results confirm that the B-H-B bridge in ADB is stronger than that in diborane (B2H6, DB). The B-H-B bridge is opened when ADB and NaH react to form sodium aminodiboronate, Na[NH2(BH3)2]. The structure of the sodium salt as its 18-crown-6 ether adduct was determined by X-ray single crystal analysis.

9.
Acc Chem Res ; 47(2): 341-54, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24224464

RESUMEN

Aromatic compounds, such as benzene and its derivatives, porphyrins, fullerenes, carbon nanotubes, and graphene, have numerous applications in biomedicine, materials science, energy science, and environmental science. Metalla-aromatics are analogues of conventional organic aromatic molecules in which one of the (hydro)carbon segments is formally replaced by an isolobal transition-metal fragment. Researchers have studied these transition-metal-containing aromatic molecules for the past three decades, particularly the synthesis and reactivity of metallabenzenes. Another focus has been the preparation and characterization of other metalla-aromatics such as metallafurans, metallapyridines, metallabenzynes, and more. Despite significant advances, remaining challenges in this field include the limited number of convenient and versatile synthetic methods to construct stable and fully characterized metalla-aromatics, and the relative shortage of new topologies. To address these challenges, we have developed new methods for preparing metalla-aromatics, especially those possessing new topologies. Our synthetic efforts have led to a large family of closely related metalla-aromatics known as aromatic osmacycles. This Account summarizes the synthesis and reactivity of these compounds, with a focus on features that are different from those of compounds developed by other groups. These osmacycles can be synthesized from simple precursors under mild conditions. Using these efficient methods, we have synthesized aromatic osmacycles such as osmabenzene, osmabenzyne, isoosmabenzene, osmafuran, and osmanaphthalene. Furthermore, these methods have also created a series of new topologies, such as osmabenzothiazole and osmapyridyne. Our studies of the reactivity of these osma-aromatics revealed unprecedented reaction patterns, and we demonstrated the interconversion of several osmacycles. Like other metalla-aromatics, osma-aromatics have spectroscopic features of aromaticity, such as ring planarity and the characteristic bond lengths between a single and double bond, but the osma-aromatics we have prepared also exhibit good stability towards air, water, and heat. Indeed, some seemingly unstable species proved stable, and their stability made it possible to study their optical, electrochemical, and magnetic properties. The stability of these compouds results from their aromaticity and the phosphonium substituents on the aromatic plane: most of our osma-aromatics carry at least one phosphonium group. The phosphonium group offers stability via both electronic and steric mechanisms. The phosphonium acts as an electron reservoir, allowing the circulation of electron pairs along metallacycles and lowering the electron density of the aromatic rings. Meanwhile, the bulky phosphonium groups surrounding the aromatic metallacycle prevent most reactions that could decompose the skeleton.

10.
Chemistry ; 20(24): 7325-33, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24788403

RESUMEN

Attempts to synthesize solvent-free MgB12H12 by heating various solvated forms (H2O, NH3, and CH3OH) of the salt failed because of the competition between desolvation and dehydrogenation. This competition has been studied by thermogravimetric analysis (TGA) and temperature-programmed desorption (TPD). Products were characterized by IR, solution- and solid-state NMR spectroscopy, elemental analysis, and single-crystal or powder X-ray diffraction analysis. For hydrated salts, thermal decomposition proceeded in three stages, loss of water to form first hexahydrated then trihydrated, and finally loss of water and hydrogen to form polyhydroxylated complexes. For partially ammoniated salts, two stages of thermal decomposition were observed as ammonia and hydrogen were released with weight loss first of 14 % and then 5.5 %. Thermal decomposition of methanolated salts proceeded through a single step with a total weight loss of 32 % with the release of methanol, methane, and hydrogen. All the gaseous products of thermal decomposition were characterized by using mass spectrometry. Residual solid materials were characterized by solid-state (11)B magic-angle spinning (MAS) NMR spectroscopy and X-ray powder diffraction analysis by which the molecular structures of hexahydrated and trihydrated complexes were solved. Both hydrogen and dihydrogen bonds were observed in structures of [Mg(H2O)6B12H12]⋅6 H2O and [Mg(CH3OH)6B12H12]⋅6 CH3OH, which were determined by single-crystal X-ray diffraction analysis. The structural factors influencing thermal decomposition behavior are identified and discussed. The dependence of dehydrogenation on the formation of dihydrogen bonds may be an important consideration in the design of solid-state hydrogen storage materials.

11.
RSC Adv ; 14(6): 4230-4243, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38292266

RESUMEN

Polysilicon is widely used in the field of semiconductors and solar energy. Trichlorosilane feedstocks that are used to produce polysilicon in the mainstream production process contain PCl3 impurities that have adverse effects on the quality of the polysilicon. Traditional methods for dephosphorization cannot achieve the effect of complete removal, whereas oxidizing PCl3 to POCl3 in the presence of oxygen for removal via adsorption is a promising and appealing route for establishing a dephosphorization process; it has a high phosphorous removal rate due to the strong Lewis-base property of POCl3 in comparison with PCl3. In this work, we synthesized an active catalyst with an active interface between Au nanoparticles (NPs) and a manganese-oxide support (Mn3O4) by calcination of a corresponding composite, where Au NPs were embedded uniformly in a metal-organic framework (MOF). The catalyst shows a significantly active catalytic performance for trace PCl3 oxidation in an organic system that is an imitation of a trichlorosilane system, with a 99.13% yield of POCl3 in an 80 °C and 0.6 MPa reaction environment. The structure-performance-mechanism analysis shows that the possible reaction and catalytic mechanism is PCl3 oxidation by interface lattice oxygens, which bridge the Au NPs and the support, in a Mars van Krevelen (MvK) process; this process was promoted by the interaction between the Au NPs and Mn3O4 in terms of charge transfer and chemical potential changes. This work provides an effective way to dephosphorize trichlorosilane feedstocks in the polysilicon industry and gives guidance for constructing an efficient catalyst via the study of the structure and mechanism.

12.
Food Chem ; 456: 139933, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38852462

RESUMEN

Neglected and underutilised plants such as Pseudocydonia sinensis (Chinese quince) have garnered global interest as invaluable sources of natural bioactive compounds. Herein, a wide-targeted metabolomics-based approach revealed 1199 concurrent metabolites, with further analysis of their fluctuations across with the five stages of fruit growth. The bioactive compounds in Chinese quince primarily comprised sugars and organic acids, flavonoids, and terpenoids. Moreover, 395 metabolites were identified as having medicinal properties and rutin was the most content of them. Transcriptome analysis further provided a molecular basis for the metabolic changes observed during fruit development. By thoroughly analysing metabolite and transcriptome data, we revealed changes in bioactive compounds and related genes throughout fruit development. This study has yielded valuable insights into the ripening process of Chinese quince fruit, presenting substantial implications for industrial applications, particularly in quality control.

13.
Genome Biol ; 25(1): 116, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715020

RESUMEN

BACKGROUND: Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS: We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS: This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.


Asunto(s)
Genoma , Variación Estructural del Genoma , Animales , Sus scrofa/genética , Polimorfismo de Nucleótido Simple , Porcinos/genética , Mapeo Cromosómico
14.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177344

RESUMEN

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Porcinos/genética , Animales , Humanos , Genotipo , Fenotipo , Análisis de Secuencia de ARN
15.
Mol Hortic ; 3(1): 25, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37990285

RESUMEN

Drought stress has been demonstrated to enhance the biosynthesis of anthocyanins in the leaves, resulting in an increased aesthetic appeal. However, the molecular mechanisms underlying drought-induced anthocyanin biosynthesis in Chaenomeles speciosa remain unclear. In this study, the metabolites of C. speciosa leaves were analyzed, and it was found that the content of cyanidin-3-O-rutinoside increased significantly under drought stress. The differentially expressed genes CsMYB123 and CsbHLH111 were isolated by transcriptomics data analysis and gene cloning, and gene overexpression and VIGS experiments verified that both play important roles in anthocyanin biosynthesis. Subsequently, Y1H and Dual-luciferase reporter assay showed that CsMYB123 binds to the promoters of anthocyanin biosynthesis-related structural genes (such as CsCHI, CsF3H, and CsANS), while CsbHLH111 was shown to bind to the promoter of CsCHI, positively regulating its activity. Furthermore, BIFC and Y2H assays unveiled potential protein-protein interactions between CsMYB123 and CsbHLH111 at the cell nucleus. Collectively, these results shed light on the critical roles played by CsMYB123 and CsbHLH111 in anthocyanin biosynthesis, thus providing a valuable insight into understanding the molecular mechanisms of how the MYB and bHLH genes regulate anthocyanin biosynthesis in the process of leaf coloration in C. speciosa.

16.
Behav Brain Res ; 452: 114548, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355234

RESUMEN

Maternal separation (MS) is a type of early-life stress that has been linked to neuropsychiatric disorders, especially depression. Increasing evidence indicates that the adenosine triphosphate (ATP) level in the prefrontal cortex (PFC) is involved in the pathophysiology of depression. To investigate the potential relationship between ATP in PFC and antidepressant effects of electroacupuncture (EA) treatment, we assessed genes involved in ATP biosynthesis as well as the extracellular ATP levels in a rat model exposed to neonatal MS. Our results demonstrated that reduced expression of ABCG2 (an ATP-binding cassette protein) and ATP levels in the PFC of depressive-like rats exposed to MS can be attenuated by EA stimulus at the Baihui (GV20) and Yintang (GV29) acupoints. Moreover, the antidepressant effect of EA treatment was blocked by administration of suramin, a broad purinergic P2 receptor antagonist. Together, these results suggested that electroacupuncture may be able to modulate extracellular ATP levels in the PFC of depressive-like MS rats, potentially contributing to its antidepressant effects.


Asunto(s)
Electroacupuntura , Ratas , Animales , Ratas Sprague-Dawley , Electroacupuntura/métodos , Privación Materna , Corteza Prefrontal , Antidepresivos/farmacología
17.
Chemistry ; 18(37): 11597-603, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22890956

RESUMEN

We report herein the first example of the conversion of metallabenzyne II and isometallabenzene III. The osmium hydride vinylidene complex 1 reacts with HC≡CCH(OEt)(2) to give osmabenzyne 3 via isoosmabenzene 2. Compound 3 exhibits high thermal stability in air. Nonetheless, nucleophilic attack at 3 provides isoosmabenzenes 4 a and 4 b, or opens the ring to produce 5 a and 5 b. We propose mechanisms to disclose the intrinsic connection between the six-membered metallacycles, and carry out DFT calculations to rationalize the regioselectivity of the nucleophilic addition reactions.


Asunto(s)
Benceno/química , Compuestos Organometálicos/química , Osmio/química , Modelos Moleculares , Estructura Molecular
18.
World J Clin Cases ; 10(36): 13443-13450, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36683631

RESUMEN

BACKGROUND: Congenital nephrogenic diabetes insipidus (CNDI) is a rare hereditary disorder. It is associated with mutations in the arginine vasopressin receptor 2 (AVPR2) gene and aquaporin 2 (AQP2) gene, and approximately 270 different mutation sites have been reported for AVPR2. Therefore, new mutations and new manifestations are crucial to complement the clinical deficiencies in the diagnosis of this disease. We report a case of a novel AVPR2 gene mutation locus and a new clinical mani-festation. CASE SUMMARY: We describe the case of a 48-d-old boy who presented with recurrent fever and diarrhea 5 d after birth. Laboratory tests showed electrolyte disturbances and low urine specific gravity, and imaging tests showed no abnormalities. Genetic testing revealed a novel X-linked recessive missense mutation, c.283 (exon 2) C>T (p.P95S). This mutation results in the substitution of a proline residue with a serine residue in the AVPR2 protein sequence. The diagnosis of CNDI was confirmed based on the AVPR2 gene mutation. The treatment strategy for this patient was divided into two stages, including physical cooling supplemented with appropriate amounts of water in the early stage and oral hydrochlorothia-zide (1-2 mg/kg) after a clear diagnosis. After follow-up of one and a half years, the patient gradually improved. CONCLUSION: AVPR2 gene mutations in new loci and new clinical symptoms help clinicians understand this disease and shorten the diagnosis cycle.

19.
Medicine (Baltimore) ; 99(22): e20121, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32481378

RESUMEN

INTRODUCTION: The aim of this study was to evaluate the efficacy and safety of azithromycin (AZI) combined with glucocorticoid (GC) in the treatment of children with refractory Mycoplasma pneumoniae. METHODS: Computer search for PubMed, EMbase, Cochrane Library, China Biomedical Literature Database (CBMdisc), China Knowledge Network (CNKI), Wanfang, VIP (VIP), and a randomized controlled trial (RCT) of AZI combined with GC in the treatment of children with refractory Mycoplasma pneumoniae pneumonia test (RCT), the search time limit is built until March 20, 2019. Two researchers independently performed literature screening, data extraction, and literature risk bias, and meta-analysis was performed using RevMan 5.3 software. RESULTS: A total of 12 RCTs were included, including 1130 patients. Meta-analysis showed that AZI combined with GC therapy significantly improved the total effective rate of the disease compared with the conventional treatment group (odds ratio [OR] = 6.37; 95% confidence interval [CI] 4.03, 10.07; P < .00001; I = 0%), effectively shortened the antipyretic time (SMD = -2.29; 95% CI -2.70, -1.88; P < .0001); promoted lung inflammation absorption (SMD = -1.89; 95% CI -2.38, -1.40; P < .0001), reduced cough time (SMD = -2.39; 95% CI -2.80, -1.99; P < .0001); shortened hospital stay (SMD = -2.19; 95% CI -3.21, -1.17; P < .0001); improved imaging findings (OR = 5.38; 95% CI 1.09, 26.51, P = .04); reduced inflammation index (SMD = -3.15; 95% CI -4.93, -1.36; P = .004); improved immune function (SMD = 1.29; 95% CI -0.02, 2.60; P < .0001); had no significant adverse reactions (OR = 1.18; 95% CI 0.71, 1.98; P = .53). CONCLUSIONS: According to the current limited research evidence, the addition of GCs to the conventional treatment of refractory Mycoplasma pneumoniae in children can improve the clinical efficacy to a certain extent, and the safety is better. However, due to the quality and quantity of the included literature, the conclusions of this study need to be confirmed by more high-quality studies.


Asunto(s)
Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , Glucocorticoides/uso terapéutico , Mycoplasma pneumoniae , Neumonía por Mycoplasma/tratamiento farmacológico , Antibacterianos/efectos adversos , Azitromicina/efectos adversos , Niño , Tos/tratamiento farmacológico , Tos/microbiología , Quimioterapia Combinada , Fiebre/tratamiento farmacológico , Fiebre/microbiología , Glucocorticoides/efectos adversos , Humanos , Tiempo de Internación , Neumonía por Mycoplasma/complicaciones , Neumonía por Mycoplasma/diagnóstico por imagen
20.
Chemistry ; 15(14): 3546-59, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19219873

RESUMEN

Treatment of [OsCl(2)(PPh(3))(3)] with HC[triple bond]CCH(OH)C[triple bond]CH/PPh(3) produces the osmabenzene [Os{CHC(PPh(3))CHC(PPh(3))CH}Cl(2)(PPh(3))(2)][OH] (2), which is air stable in both solution and solid state. The key intermediate of the one-pot reaction, [OsCl(2){CH=C(PPh(3))CH(OH)C[triple bond]CH}(PPh(3))(2)] (3), and the related complex [Os(NCS)(2){CHC(PPh(3))CH(OH)C[triple bond]CH}(PPh(3))(2)] (7) have been isolated and characterized, further supporting the proposed mechanisms for the reaction. Reactions of 3 with PPh(3), NaI, and NaSCN give osmabenzene 2, iodo-substituted osmabenzene [Os{CHC(PPh(3))CHCICH}I(2)(PPh(3))(2)] (4), and thiocyanato-substituted osmabenzene [Os{CHC(PPh(3))CHC(SCN)CH}(NCS)(2)(PPh(3))(2)] (5) respectively. Similarly, reaction of [OsBr(2)(PPh(3))(3)] with HC[triple bond]CCH(OH)C[triple bond] CH in THF produces [OsBr(2){CH=C(PPh(3))CH(OH)C[triple bond]CH}(PPh(3))(2)] (9), which reacts with PPh(3)/Bu(4)NBr to give osmabenzene [Os{CHC(PPh(3))CHC(PPh(3))CH}Br(2)(PPh(3))(2)]Br (10). Ligand substitution reactions of 2 produce a series of new stable osmabenzenes 11-17. An electrochemical study shows that osmabenzenes 2, 12, and 14-17 have interesting different electrochemical properties due to the different co-ligand. The oxidation potentials of complexes 2, 12, 16, and 17 with Cl, NCS, and N(CN)(2) ligands gradually positively shift in the sequence of Cl

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA