Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(3): 607-19, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25083871

RESUMEN

MicroRNAs are well known to mediate translational repression and mRNA degradation in the cytoplasm. Various microRNAs have also been detected in membrane-compartmentalized organelles, but the functional significance has remained elusive. Here, we report that miR-1, a microRNA specifically induced during myogenesis, efficiently enters the mitochondria where it unexpectedly stimulates, rather than represses, the translation of specific mitochondrial genome-encoded transcripts. We show that this positive effect requires specific miR:mRNA base-pairing and Ago2, but not its functional partner GW182, which is excluded from the mitochondria. We provide evidence for the direct action of Ago2 in mitochondrial translation by crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq), functional rescue with mitochondria-targeted Ago2, and selective inhibition of the microRNA machinery in the cytoplasm. These findings unveil a positive function of microRNA in mitochondrial translation and suggest a highly coordinated myogenic program via miR-1-mediated translational stimulation in the mitochondria and repression in the cytoplasm.


Asunto(s)
Diferenciación Celular , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mioblastos/metabolismo , Miocitos Cardíacos/metabolismo , Biosíntesis de Proteínas , Animales , Proteínas Argonautas/metabolismo , Línea Celular , Ratones , Mioblastos/citología , Miocitos Cardíacos/citología
2.
Nat Immunol ; 17(3): 241-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26692175

RESUMEN

The gene encoding PTEN is one of the most frequently mutated tumor suppressor-encoding genes in human cancer. While PTEN's function in tumor suppression is well established, its relationship to anti-microbial immunity remains unknown. Here we found a pivotal role for PTEN in the induction of type I interferon, the hallmark of antiviral innate immunity, that was independent of the pathway of the kinases PI(3)K and Akt. PTEN controlled the import of IRF3, a master transcription factor responsible for IFN-ß production, into the nucleus. We further identified a PTEN-controlled negative phosphorylation site at Ser97 of IRF3 and found that release from this negative regulation via the phosphatase activity of PTEN was essential for the activation of IRF3 and its import into the nucleus. Our study identifies crosstalk between PTEN and IRF3 in tumor suppression and innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , Fosfohidrolasa PTEN/inmunología , Infecciones por Respirovirus/inmunología , Infecciones por Rhabdoviridae/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular , Proliferación Celular , Citocinas/inmunología , Células Dendríticas/inmunología , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Factor 3 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/genética , Células MCF-7 , Macrófagos/inmunología , Espectrometría de Masas , Ratones , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus Sendai , Vesiculovirus
3.
Nature ; 608(7922): 413-420, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922515

RESUMEN

High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.


Asunto(s)
Receptor de Asialoglicoproteína , Colesterol , Metabolismo de los Lípidos , Proteínas Quinasas Activadas por AMP/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8 , Receptor de Asialoglicoproteína/antagonistas & inhibidores , Receptor de Asialoglicoproteína/deficiencia , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Asialoglicoproteínas/metabolismo , Atorvastatina/farmacología , Proteína BRCA1 , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Colesterol/metabolismo , Sinergismo Farmacológico , Endocitosis , Ezetimiba/farmacología , Humanos , Lípidos/análisis , Lípidos/sangre , Hígado/metabolismo , Receptores X del Hígado/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Ubiquitina-Proteína Ligasas/metabolismo
4.
EMBO J ; 42(3): e111513, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524353

RESUMEN

Hedgehog (Hh) signaling pathway plays a pivotal role in embryonic development. Hh binding to Patched1 (PTCH1) derepresses Smoothened (SMO), thereby activating the downstream signal transduction. Covalent SMO modification by cholesterol in its cysteine-rich domain (CRD) is essential for SMO function. SMO cholesterylation is a calcium-accelerated autoprocessing reaction, and STIM1-ORAI1-mediated store-operated calcium entry promotes cholesterylation and activation of endosome-localized SMO. However, it is unknown whether the Hh-PTCH1 interplay regulates the activity of the endoplasmic reticulum (ER)-localized SMO. Here, we found that PTCH1 inhibited the COPII-dependent export of SMO from the ER, whereas Hh promoted this process. The RRxWxR amino acid motif in the cytosolic tail of SMO was essential for COPII recognition, ciliary localization, and signal transduction activity. Hh and PTCH1 regulated cholesterol modification of the ER-localized SMO, and SMO cholesterylation accelerated its exit from ER. The GRAMD1/ASTER sterol transport proteins facilitated cholesterol transfer to ER from PM, resulting in increased SMO cholesterylation and enhanced Hh signaling. Collectively, we reveal a regulatory role of GRAMD-mediated cholesterol transport in ER-resident SMO maturation and Hh signaling.


Asunto(s)
Calcio , Proteínas Hedgehog , Transporte Biológico , Calcio/metabolismo , Colesterol/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas de la Membrana/metabolismo
5.
Genes Dev ; 33(5-6): 348-364, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808657

RESUMEN

RNAi and Polycomb repression play evolutionarily conserved and often coordinated roles in transcriptional silencing. Here, we show that, in the protozoan Tetrahymena thermophila, germline-specific internally eliminated sequences (IESs)-many related to transposable elements (TEs)-become transcriptionally activated in mutants deficient in the RNAi-dependent Polycomb repression pathway. Germline TE mobilization also dramatically increases in these mutants. The transition from noncoding RNA (ncRNA) to mRNA production accompanies transcriptional activation of TE-related sequences and vice versa for transcriptional silencing. The balance between ncRNA and mRNA production is potentially affected by cotranscriptional processing as well as RNAi and Polycomb repression. We posit that interplay between RNAi and Polycomb repression is a widely conserved phenomenon, whose ancestral role is epigenetic silencing of TEs.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas del Grupo Polycomb/genética , Proteínas Protozoarias/genética , Interferencia de ARN , Tetrahymena thermophila/genética , Activación Transcripcional/genética , Epigénesis Genética , Silenciador del Gen , Mutación , ARN Mensajero/genética , ARN no Traducido/genética
6.
Nature ; 588(7838): 479-484, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177714

RESUMEN

Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.


Asunto(s)
Colesterol/biosíntesis , Ingestión de Alimentos/fisiología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Metabolismo/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfoserina/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/deficiencia , Ubiquitinación , Aumento de Peso
7.
Nucleic Acids Res ; 50(D1): D72-D82, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34792166

RESUMEN

Rapid advances in high-throughput sequencing technologies have led to the discovery of thousands of extrachromosomal circular DNAs (eccDNAs) in the human genome. Loss-of-function experiments are difficult to conduct on circular and linear chromosomes, as they usually overlap. Hence, it is challenging to interpret the molecular functions of eccDNAs. Here, we present CircleBase (http://circlebase.maolab.org), an integrated resource and analysis platform used to curate and interpret eccDNAs in multiple cell types. CircleBase identifies putative functional eccDNAs by incorporating sequencing datasets, computational predictions, and manual annotations. It classifies them into six sections including targeting genes, epigenetic regulations, regulatory elements, chromatin accessibility, chromatin interactions, and genetic variants. The eccDNA targeting and regulatory networks are displayed by informative visualization tools and then prioritized. Functional enrichment analyses revealed that the top-ranked cancer cell eccDNAs were enriched in oncogenic pathways such as the Ras and PI3K-Akt signaling pathways. In contrast, eccDNAs from healthy individuals were not significantly enriched. CircleBase provides a user-friendly interface for searching, browsing, and analyzing eccDNAs in various cell/tissue types. Thus, it is useful to screen for potential functional eccDNAs and interpret their molecular mechanisms in human cancers and other diseases.


Asunto(s)
Cromosomas/genética , ADN Circular/genética , Bases de Datos Genéticas , Herencia Extracromosómica/genética , Linaje de la Célula/genética , Citoplasma/genética , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
8.
J Lipid Res ; 64(12): 100465, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890669

RESUMEN

Accurate intracellular cholesterol traffic plays crucial roles. Niemann Pick type C (NPC) proteins NPC1 and NPC2, are two lysosomal cholesterol transporters that mediate the cholesterol exit from lysosomes. However, other proteins involved in this process remain poorly defined. Here, we find that the previously unannotated protein TMEM241 is required for cholesterol egressing from lysosomes through amphotericin B-based genome-wide CRISPR-Cas9 KO screening. Ablation of TMEM241 caused impaired sorting of NPC2, a protein utilizes the mannose-6-phosphate (M6P) modification for lysosomal targeting, resulting in cholesterol accumulation in the lysosomes. TMEM241 is a member of solute transporters 35 nucleotide sugar transporters family and localizes on the cis-Golgi network. Our data indicate that TMEM241 transports UDP-N-acetylglucosamine (UDP-GlcNAc) into Golgi lumen and UDP-GlcNAc is used for the M6P modification of proteins including NPC2. Furthermore, Tmem241-deficient mice display cholesterol accumulation in pulmonary cells and behave pulmonary injury and hypokinesia. Taken together, we demonstrate that TMEM241 is a Golgi-localized UDP-GlcNAc transporter and loss of TMEM241 causes cholesterol accumulation in lysosomes because of the impaired M6P-dependent lysosomal targeting of NPC2.


Asunto(s)
Colesterol , Proteínas de Transporte Vesicular , Animales , Ratones , Proteínas de Transporte Vesicular/metabolismo , Colesterol/metabolismo , Uridina Difosfato/metabolismo , Lisosomas/metabolismo
9.
Circulation ; 145(9): 675-687, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35189703

RESUMEN

BACKGROUND: High blood cholesterol accelerates the progression of atherosclerosis, which is an asymptomatic process lasting for decades. Rupture of atherosclerotic plaques induces thrombosis, which results in myocardial infarction or stroke. Lowering cholesterol levels is beneficial for preventing atherosclerotic cardiovascular disease. METHODS: Low-density lipoprotein (LDL) receptor (LDLR) was used as bait to identify its binding proteins in the plasma, and the coagulation factor prekallikrein (PK; encoded by the KLKB1 gene) was revealed. The correlation between serum PK protein content and lipid levels in young Chinese Han people was then analyzed. To investigate the effects of PK ablation on LDLR and lipid levels in vivo, we genetically deleted Klkb1 in hamsters and heterozygous Ldlr knockout mice and knocked down Klkb1 using adeno-associated virus-mediated shRNA in rats. The additive effect of PK and proprotein convertase subtilisin/kexin 9 inhibition also was evaluated. In addition, we applied the anti-PK neutralizing antibody that blocked the PK and LDLR interaction in mice. Mice lacking both PK and apolipoprotein e (Klkb1-/-Apoe-/-) were generated to assess the role of PK in atherosclerosis. RESULTS: PK directly bound LDLR and induced its lysosomal degradation. The serum PK concentrations positively correlated with LDL cholesterol levels in 198 young Chinese Han adults. Genetic depletion of Klkb1 increased hepatic LDLR and decreased circulating cholesterol in multiple rodent models. Inhibition of proprotein convertase subtilisin/kexin 9 with evolocumab further decreased plasma LDL cholesterol levels in Klkb1-deficient hamsters. The anti-PK neutralizing antibody could similarly lower plasma lipids through upregulating hepatic LDLR. Ablation of Klkb1 slowed the progression of atherosclerosis in mice on Apoe-deficient background. CONCLUSIONS: PK regulates circulating cholesterol levels through binding to LDLR and inducing its lysosomal degradation. Ablation of PK stabilizes LDLR, decreases LDL cholesterol, and prevents atherosclerotic plaque development. This study suggests that PK is a promising therapeutic target to treat atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , LDL-Colesterol/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/prevención & control , Precalicreína/deficiencia , Receptores de LDL/metabolismo , Animales , Aterosclerosis/genética , LDL-Colesterol/genética , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Placa Aterosclerótica/genética , Precalicreína/metabolismo , Proteolisis , Receptores de LDL/genética
10.
Nucleic Acids Res ; 49(D1): D1289-D1301, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33179738

RESUMEN

The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, 'Mutation', 'Gene', 'Pathway' and 'Cancer', to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.


Asunto(s)
Carcinogénesis/genética , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Mutación , Proteínas de Neoplasias/genética , Neoplasias/genética , Programas Informáticos , Algoritmos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Biología Computacional , Exoma , Humanos , Internet , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Neoplasias/clasificación , Neoplasias/metabolismo , Neoplasias/patología , Oncogenes
11.
Nucleic Acids Res ; 49(10): 5407-5425, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33412588

RESUMEN

Polycomb group (PcG) proteins are widely utilized for transcriptional repression in eukaryotes. Here, we characterize, in the protist Tetrahymena thermophila, the EZL1 (E(z)-like 1) complex, with components conserved in metazoan Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The EZL1 complex is required for histone H3 K27 and K9 methylation, heterochromatin formation, transposable element control, and programmed genome rearrangement. The EZL1 complex interacts with EMA1, a helicase required for RNA interference (RNAi). This interaction is implicated in co-transcriptional recruitment of the EZL1 complex. Binding of H3K27 and H3K9 methylation by PDD1-another PcG protein interacting with the EZL1 complex-reinforces its chromatin association. The EZL1 complex is an integral part of Polycomb bodies, which exhibit dynamic distribution in Tetrahymena development: Their dispersion is driven by chromatin association, while their coalescence by PDD1, likely via phase separation. Our results provide a molecular mechanism connecting RNAi and Polycomb repression, which coordinately regulate nuclear bodies and reorganize the genome.


Asunto(s)
Heterocromatina/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Tetrahymena thermophila/genética , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Procesamiento Proteico-Postraduccional
12.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1171-1179, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35904215

RESUMEN

The Hedgehog (Hh) signaling pathway is critical for embryonic development and tissue renewal. The G protein-coupled receptor (GPCR)-like protein Smoothened (SMO) is the central signal transducer in the Hh pathway. Cholesterol binds and then covalently links to the D95 residue of cysteine-rich domain (CRD) of human SMO. The cholesterylation of CRD is critical for SMO activation. SMO cholesterylation is a Ca 2+-boosted autoreaction that requires the formation of an ester bond between the side chains of D95 and Y130 as an intermediate. It is unknown whether other residues of SMO are involved in the esterification between D95 and cholesterol. In this study, we find that the SMO-CRD(27-192) can undergo cholesterylation. In addition to D95 and Y130, the residues critical for cholesterol modification include Y85, T88, T90, W109, W119, K133, E160 and F166. T88, W109, W119 and F166 also seem to be involved in protein folding. Notably, we find that Y85 and K133 form a cation-π interaction whose disruption abolishes cholesterylation and ciliary localization of SMO. This study highlights the mechanism and function of cholesterol modification of SMO.


Asunto(s)
Cisteína , Proteínas Hedgehog , Cationes , Colesterol/metabolismo , Ésteres , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3609-3618, 2022 Jul.
Artículo en Zh | MEDLINE | ID: mdl-35850815

RESUMEN

This study aims to systematically elucidate the pharmacodynamics and network pharmacological mechanism of Mongolian medicinal plants Scabiosa comosa, explore their key targets and related pathways, and further clarify the mechanism of the plants in treating liver fibrosis. Wistar rats were assigned into the blank group, carbon tetrachloride-induced liver fibrosis model group, and low-, medium-, and high-dose S. comosa groups. HE staining and Masson staining were performed for the observation of liver tissue under a microscope. Further, Wistar rats were assigned into a control group and a S. comosa group for administration. Seven days later, blood was collected from the abdominal aorta, and different doses of drug-containing serum samples were used to treat hepatic stellate cell-T6(HSC-T6). Flow cytometry was adopted to detect the apoptosis of HSC-T6 cells. Ultra-high performance liquid chromatography-time of flight-mass spectrometry(UHPLC-TOF-MS) was employed to determine the components in Scabiosa comosa. The target of S. comosa and liver fibrosis were obtained from SwissTargetPrediction and GeneCards, respectively, and the common targets were selected as the anti-liver fibrosis targets. Protein-protein interaction was analyzed via STRING. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were carried out via Metascape. Phosphatidylinosital 3-kinase(PI3 K), protein kinase B(AKT), p-AKT, p38, and p-p38 targets which are involved in the top-ranked PI3 K/AKT and mitogen activated kinase-like protein(MAPK) signaling pathways were selected for validation via Western blot. The HE and Masson staining results showed that Scabiosa alleviated the hyperplasia of connective tissue and the fibrosis. The serum containing Scabiosa significantly promoted the apoptosis of HSC-T6 in a concentration-dependent manner. A total of 76 chemical components were identified by UHPLC-TOF-MS, among which flavonoids, alkaloids, terpenoids, phenols, and fatty acids were the main components. According to the prediction, there were 63 anti-liver fibrosis targets in Scabiosa comosa, the annotated GO terms of which involved biological processes, cell components, and molecular functions. The KEGG pathway enrichment showed that the targets were mainly involved in PI3 K/AKT, epidermal growth factor receptor(EGFR), RAS-associated protein 1(Rap1), hypoxia-inducible factor 1(HIF-1), resistance to audiogenic seizures(Ras), and MAPK signaling pathways. Western blot results showed that compared with the model group, S. comosa down-regulated the protein levels of α-smooth muscle actin(α-SMA), collagen Ⅰ, PI3 K, AKT, p-AKT, p38, and p-p38 in liver tissue. Compared with the control group, the low-, medium-, and high-dose S. comosa significantly down-regulated the protein levels of α-SMA, collagen Ⅰ, PI3 K, AKT, p-AKT, p38, and p-p38 in HSC-T6. The evidence of pharmacodynamics, network pharmacology, and molecular biology indicated that the plants of S. comosa had significant activity against liver fibrosis, the mechanism of which may involve the regulation of the key targets PI3 K, AKT, and MAPK14 p38 in the PI3 K/AKT and MAPK signaling pathways.


Asunto(s)
Dipsacaceae , Medicamentos Herbarios Chinos , Animales , Colágeno Tipo I/metabolismo , Medicamentos Herbarios Chinos/farmacología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Farmacología en Red , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
14.
PLoS Pathog ; 15(10): e1008079, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31603949

RESUMEN

Interferon-inducible p200 family protein IFI204 was reported to be involved in DNA sensing, and subsequently induces the production of type I interferons and proinflammatory mediators. However, its function in the regulation of antiviral innate immune signaling pathway remains unclear. Here we reported a novel role of IFI204 that specifically inhibits the IRF7-mediated type I interferons response during viral infection. IFI204 and other p200 family proteins are highly expressed in mouse hepatitis coronavirus-infected bone marrow-derived dendritic cells. The abundant IFI204 could significantly interact with IRF7 in nucleus by its HIN domain and prevent the binding of IRF7 with its corresponding promoter. Moreover, other p200 family proteins that possess HIN domain could also inhibit the IRF7-mediated type I interferons. These results reveal that, besides the positive regulation function in type I interferon response at the early stage of DNA virus infection, the interferon-inducible p200 family proteins such as IFI204 could also negatively regulate the IRF7-mediated type I interferon response after RNA virus infection to avoid unnecessary host damage from hyper-inflammatory responses.


Asunto(s)
Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/inmunología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Células 3T3 , Células A549 , Animales , Línea Celular , Infecciones por Coronavirus/patología , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Inflamación/inmunología , Inflamación/patología , Factor 7 Regulador del Interferón/genética , Ratones , Células RAW 264.7
15.
Nucleic Acids Res ; 47(D1): D1044-D1055, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30445567

RESUMEN

Whole-exome and whole-genome sequencing have revealed millions of somatic mutations associated with different human cancers, and the vast majority of them are located outside of coding sequences, making it challenging to directly interpret their functional effects. With the rapid advances in high-throughput sequencing technologies, genome-scale long-range chromatin interactions were detected, and distal target genes of regulatory elements were determined using three-dimensional (3D) chromatin looping. Herein, we present OncoBase (http://www.oncobase.biols.ac.cn/), an integrated database for annotating 81 385 242 somatic mutations in 68 cancer types from more than 120 cancer projects by exploring their roles in distal interactions between target genes and regulatory elements. OncoBase integrates local chromatin signatures, 3D chromatin interactions in different cell types and reconstruction of enhancer-target networks using state-of-the-art algorithms. It employs informative visualization tools to display the integrated local and 3D chromatin signatures and effects of somatic mutations on regulatory elements. Enhancer-promoter interactions estimated from chromatin interactions are integrated into a network diffusion system that quantitatively prioritizes somatic mutations and target genes from a large pool. Thus, OncoBase is a useful resource for the functional annotation of regulatory noncoding regions and systematically benchmarking the regulatory effects of embedded noncoding somatic mutations in human carcinogenesis.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Secuencia de Bases , Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , Internet , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados
16.
Nano Lett ; 20(8): 5705-5713, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32692569

RESUMEN

To mimic and use the functions of the ion transport system that are central to biological processes, bioinspired ion-selective membranes are developed and show great potential in a variety of fields. However, the practical applications of them are now limited due to low pore density, low conductivity, or scale-up difficulty. Herein, we demonstrate a 2-hydroxyethyl methacrylate phosphate (HEMAP) hydrogel membrane with 3D interconnected nanopores and space charged through simple photopolymerization. The HEMAP hydrogel membrane exhibits high conductance and outstanding ion selectivity, and the membrane-based osmotic power generator shows the excellent output power density up to 5.38 W/m2. Both experimentally and theoretically, the 3D interconnected structure is revealed to play a key role in enhancing charge-governed ion transport and energy conversion. This work highlights the advantages of 3D interconnected nanopores in ion diffusion and shows the potential of our designed hydrogel membrane in osmotic energy conversion, water desalination, and sensors.


Asunto(s)
Nanoporos , Difusión , Hidrogeles , Transporte Iónico , Ósmosis
17.
Nucleic Acids Res ; 46(D1): D92-D99, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29040751

RESUMEN

De novo mutations (DNMs) have been shown to be a major cause of severe early-onset genetic disorders such as autism spectrum disorder and intellectual disability. Over one million DNMs have been identified in developmental disorders by next generation sequencing, but linking these DNMs to the genes that they impact remains a challenge, as the majority of them are embedded in non-coding regions. As most developmental diseases occur in the early stages of development or during childhood, it is crucial to clarify the details of epigenetic regulation in early development in order to interpret the mechanisms underlying developmental disorders. Here, we develop EpiDenovo, a database that is freely available at http://www.epidenovo.biols.ac.cn/, and which provides the associations between embryonic epigenomes and DNMs in developmental disorders, including several neuropsychiatric disorders and congenital heart disease. EpiDenovo provides an easy-to-use web interface allowing users rapidly to find the epigenetic signatures of DNMs and the expression patterns of the genes that they regulate during embryonic development. In summary, EpiDenovo is a useful resource for selecting candidate genes for further functional studies in embryonic development, and for investigating regulatory DNMs as well as other genetic variants causing or underlying developmental disorders.


Asunto(s)
Bases de Datos Genéticas , Discapacidades del Desarrollo/genética , Epigénesis Genética , Mutación , Animales , Trastorno del Espectro Autista/genética , Niño , Inmunoprecipitación de Cromatina , Desarrollo Embrionario/genética , Humanos , Discapacidad Intelectual/genética , Internet , Ratones , Interfaz Usuario-Computador
18.
J Oral Rehabil ; 47 Suppl 1: 4-11, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31556140

RESUMEN

BACKGROUND: Bone reconstruction of the maxillary bone defects is an urgent issue due to its functional and aesthetic influence. MicroRNAs (miRNAs) are a class of non-coding RNAs that function in diverse biological and pathological processes. Recently, microRNA-21 (miR-21) was reported to play significant roles in bone formation, suggesting that miR-21 can be novel biomarker and therapeutic target for bone remodelling and skeletal diseases. However, the role of miR-21 in maxillary bone defects remains unclear. OBJECTIVE AND METHODS: This study aimed to investigate the effect of miR-21 on the bone reconstruction by inducing maxillary bone defects in wild-type (WT) and miR-21 knockout (miR-21-KO) mice and explore these mice as maxillary bone defect models. RESULTS: Micro-computed tomography (micro-CT) and histochemistry showed that the miR-21-KO mice had reduced bone reformation ability compared with the WT mice. The expression levels of alkaline phosphatase (ALP) and osteocalcin (OCN) were dramatically decreased in the miR-21-KO mice. In addition, injection of miR-21 agomir intra-peritoneally into miR-21-KO mice (miR-21-KO+ agomir) following the maxillary bone defects surgery displayed a significantly enhanced bone formation -promoting ability, which indicated that miR-21 agomir could ameliorate maxillary bone defects in miR-21-KO mice in vivo. Furthermore, immunohistochemistry suggested that ALP and OCN expressions were prominently increased in miR-21-KO+ agomir mice. CONCLUSION: These findings demonstrated that miR-21 deficiency impaired bone reformation and miR-21 contributed to the bone reconstruction of the maxillary bone defects. The evidence also supported the use of WT and miR-21-KO mice as maxillary bone defect models for further research.


Asunto(s)
Maxilar , MicroARNs , Animales , Diferenciación Celular , Estética Dental , Humanos , Maxilar/diagnóstico por imagen , Ratones , MicroARNs/genética , Microtomografía por Rayos X
19.
Anal Chem ; 91(16): 10477-10483, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31318193

RESUMEN

RNA molecules harbor diverse chemical modifications that play important regulatory roles in a variety of biological processes. Up to date, more than 150 modifications have been identified in various RNA species. Most of these modifications occurring in nucleic acids are the methylation of nucleic acids. It has been demonstrated that many of these methylation are reversible and undergo dynamic demethylation. Previous studies established that the demethylation of the two most important and prevalent modifications of 5-methylcytidine (m5C) and N6-methyladenosine (m6A) in nucleic acids is through the hydroxylation of m5C and m6A, forming 5-hydroxymethylcytidine (hm5C) and N6-hydroxymethyladenosine (hm6A), respectively. This indicates the hydroxylation of the methylated nucleosides may be a general pathway for the demethylation of nucleic acid methylation. However, few other hydroxylmethylation modifications have yet to be reported in existence in mammals. In the current study, we developed a neutral enzymatic digestion method for the mild digestion of nucleic acids, followed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. With the established method, we reported the existence of a new hydroxylmethylated nucleosides, N2-hydroxymethylguanosine (hm2G), in mammalian RNA. In addition, we found that the contents of hm2G, as well as N2-methylguanosine (m2G), showed significant differences between thyroid carcinoma tissues and tumor-adjacent normal tissues, indicating that m2G and hm2G in RNA may play certain roles in the carcinogenesis of thyroid carcinoma. Collectively, our study suggests that RNA hydroxylmethylation may be a new prevalent group of modifications existing in RNA, which expands the diversity of nucleic acid modifications and should exert regulatory functions in living organisms.


Asunto(s)
Adenosina/análogos & derivados , Citidina/análogos & derivados , Guanosina/análogos & derivados , ARN/química , Adenosina/química , Adenosina/metabolismo , Animales , Carcinoma/química , Carcinoma/metabolismo , Cromatografía Liquida , Citidina/química , Citidina/metabolismo , Guanosina/química , Guanosina/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólisis , Hidroxilación , Mamíferos , Metilación , ARN/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Neoplasias de la Tiroides/química , Neoplasias de la Tiroides/metabolismo
20.
Nucleic Acids Res ; 45(9): 5183-5197, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28334815

RESUMEN

Histone modifiers regulate proper cellular activities in response to various environmental stress by modulating gene expression. In budding yeast, Rph1 transcriptionally represses many DNA damage or autophagy-related gene expression. However, little is known how Rph1 is regulated during these stress conditions. Here, we report that Rph1 is degraded upon DNA damage stress conditions. Notably, this degradation occurs via the autophagy pathway rather than through 26S proteasome proteolysis. Deletion of ATG genes or inhibition of vacuole protease activity compromises Rph1 turnover. We also determine that Rph1 and nuclear export protein Crm1 interact, which is required for Rph1 translocation from the nucleus to the cytoplasm. More importantly, Gcn5 directly acetylates Rph1 in vitro and in vivo, and Gcn5-containing complex, SAGA, is required for autophagic degradation of Rph1. Gcn5-mediated Rph1 acetylation is essential for the association of Rph1 with the nuclear pore protein Nup1. Finally, we show that sustaining high levels of Rph1 during DNA damage stress results in cell growth defects. Thus, we propose that Gcn5-mediated acetylation finely regulates Rph1 protein level and that autophagic degradation of Rph1 is important for cell homeostasis. Our findings may provide a general connection between DNA damage, protein acetylation and autophagy.


Asunto(s)
Autofagia , Daño del ADN , Histona Acetiltransferasas/metabolismo , Histona Demetilasas/metabolismo , Proteolisis , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Acetilación/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Autofagia/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Homeostasis/efectos de los fármacos , Carioferinas/metabolismo , Metilmetanosulfonato/toxicidad , Modelos Biológicos , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fosforilación/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Estrés Fisiológico/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA