Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 29(26): e202300062, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36806259

RESUMEN

Adjusting the crystal phase of a metal alloy is an important method to optimize catalytic performance. However, detailed understanding about the phase-property relationship for the hydrogen evolution reaction (HER) is still limited. In this work, the crystal phase-activity relationship of NiRu nanoparticles is studied employing N-doped carbon shell coated NiRu nanoparticles with different phase contents. It is found that the NiRu@NC (mix) with both face-centred cubic (fcc) and thermodynamically unstable hexagonal close-packed (hcp) phase NiRu give the best HER performance. Further activity studies demonstrate that hcp NiRu has better HER performance, and NiRu@NC (mix) with rich (∼70 %) hcp phase presented outstanding performance with an overpotential of only 27 mV @ 10 mA ⋅ cm-2 . The high HER activity of NiRu@NC (mix) is attributed to the formation of hcp phase. This finding indicates that the regulation of crystal structure can provide a new strategy for optimizing HER activity.

2.
Macromol Rapid Commun ; 37(19): 1623-1628, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27529823

RESUMEN

Increasing the flexibility of polymer chains is a common method of increasing the deformability of solid polymeric materials. Here, the effects of "conjugation-break spacers" (CBSs)-aliphatic units that interrupt the sp2 -hybridized backbone of semiconducting polymers-on the mechanical and photovoltaic properties of a diketopyrrolopyrrole-based polymer are described. Unexpectedly, the tensile moduli and cracking behavior of a series of polymers with repeat units bearing 0%, 30%, 50%, 70%, and 100% of the CBS are not directly related to the percent incorporation of the flexible unit. Rather, the mechanical properties are a strong function of the order present in the film as determined by grazing-incidence x-ray diffraction. The effect of the CBSs on the photovoltaic performance of these materials, on the other hand, is more intuitive: it decreases with increasing fraction of the flexible units. These studies highlight the importance of solid-state packing structure-as opposed to only the flexibility of the individual molecules-in determining the mechanical properties of a conjugated polymer film for stretchable, ultraflexible, and mechanically robust electronics.


Asunto(s)
Docilidad , Polímeros/química , Semiconductores , Estructura Molecular , Procesos Fotoquímicos , Polímeros/síntesis química
3.
J Phys Chem A ; 119(48): 11650-8, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26571330

RESUMEN

The f-f emissions of lanthanide-ion complexes have predictable emission energies and many practical applications, but the emitting states are generally impervious to the surroundings. This investigation explores ligand- and metal-centered emission processes for a series of mixed-ligand complexes of composition M(X-T)(NO3)3, where the metal ion is europium, gadolinium, terbium, or lutetium, and X-T denotes the tridentate ligand 2,2':6',2″-terpyridine (H-T), 4'-phenyl-2,2':6',2″-terpyridine (Ph-T), or 4'-pyrrolidin-N-yl-2,2':6',2″-terpyridine (pyrr-T). The presence of the pyrrolidinyl substituent imparts intraligand charge-transfer (ILCT) character to the ligand-based excited states and reduces the energy gap between the singlet and the triplet excited states. An enhanced rate of intersystem crossing results in a lutetium complex with a relatively small fluorescence quantum yield (0.15%) and a gadolinium complex with an impressive phosphorescence yield of 9.6% in deaerated solution. The Tb(pyrr-T)(NO3)3 system is unique because the relatively low-energy triplet ILCT state equilibrates with the emissive f-f state. The result is a truly remarkable f-f emission signal that is sensitive to the polarity of the local environment as well as the presence of dioxygen.

4.
Sci Rep ; 11(1): 13237, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168189

RESUMEN

Carbon dioxide (CO2) has been linked to many deleterious health effects, and it has also been used as a proxy for building occupancy measurements. These applications have created a need for low-cost and low-power CO2 sensors that can be seamlessly incorporated into existing buildings. We report a resonant mass sensor coated with a solution-processable polymer blend of poly(ethylene oxide) (PEO) and poly(ethyleneimine) (PEI) for the detection of CO2 across multiple use conditions. Controlling the polymer blend composition and nanostructure enabled better transport of the analyte gas into the sensing layer, which allowed for significantly enhanced CO2 sensing relative to the state of the art. Moreover, the hydrophilic nature of PEO resulted in water uptake, which provided for higher sensing sensitivity at elevated humidity conditions. Therefore, this key integration of materials and resonant sensor platform could be a potential solution in the future for CO2 monitoring in smart infrastructure.

5.
ACS Appl Mater Interfaces ; 10(5): 4904-4909, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29338181

RESUMEN

Complementary semiconducting polymer blends (c-SPBs) have been proposed and tested to achieve melt-processed high-performance organic field-effect transistors (OFETs). Prior to this study, melt processing requires temperatures as high as 180 °C. To implement this technique into low-cost and large-area thin-film manufacturing for flexible organic electronics, semiconducting materials meltable at temperatures tolerable by ubiquitous plastic substrates are still needed. We report here the design and melt processing of a c-SPB consisting of a matrix polymer (DPP-C5) and its fully conjugated analogue. By utilizing a siloxane-terminated alkyl chain and a branched alkyl chain as solubilizing groups, the matrix polymer DPP-C5 presents a melting temperature of 115 °C. The resulting c-SPB containing as low as 5% of the fully conjugated polymer could be melt-processed at 130 °C. The obtained OFET devices exhibit hole mobility approaching 1.0 cm2/(V s), threshold voltages below 5 V, and ION/IOFF around 105. This combination of efficient charge-carrier transport and considerably low processing temperatures bode well for melt processing of semiconducting polymer-based organic electronics.

6.
Adv Mater ; 29(6)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27918118

RESUMEN

Melt-processing of complementary semiconducting polymer blends provides an average charge carrier mobility of 0.4 cm2 V-1 s-1 and current on/off ratios higher than 105 , a record performance for melt-processed organic field-effect transistors.

7.
ACS Appl Mater Interfaces ; 9(33): 27863-27874, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28762715

RESUMEN

Domain alignment in conjugated polymer thin films can significantly enhance charge carrier mobility. However, the alignment mechanism during meniscus-guided solution coating remains unclear. Furthermore, interfacial alignment has been rarely studied despite its direct relevance and critical importance to charge transport. In this study, we uncover a significantly higher degree of alignment at the top interface of solution coated thin films, using a donor-acceptor conjugated polymer, poly(diketopyrrolopyrrole-co-thiophene-co-thieno[3,2-b]thiophene-co-thiophene) (DPP2T-TT), as the model system. At the molecular level, we observe in-plane π-π stacking anisotropy of up to 4.8 near the top interface with the polymer backbone aligned parallel to the coating direction. The bulk of the film is only weakly aligned with the backbone oriented transverse to coating. At the mesoscale, we observe a well-defined fibril-like morphology at the top interface with the fibril long axis pointing toward the coating direction. Significantly smaller fibrils with poor orientational order are found on the bottom interface, weakly aligned orthogonal to the fibrils on the top interface. The high degree of alignment at the top interface leads to a charge transport anisotropy of up to 5.4 compared to an anisotropy close to 1 on the bottom interface. We attribute the formation of distinct interfacial morphology to the skin-layer formation associated with high Peclet number, which promotes crystallization on the top interface while suppressing it in the bulk. We further infer that the interfacial fibril alignment is driven by the extensional flow on the top interface arisen from increasing solvent evaporation rate closer to the meniscus front.

8.
ACS Appl Mater Interfaces ; 9(30): 25426-25433, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28704039

RESUMEN

The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor-acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adopt a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm2 V-1 s-1 with a maximum value of 5.1 cm2 V-1 s-1, in comparison with 0.47 and 0.51 cm2 V-1 s-1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.

9.
Nat Commun ; 8: 16070, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703136

RESUMEN

Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template-polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor-acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA