Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2403722, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308286

RESUMEN

Gallium-based liquid metals (LMs) are widely used for stretchable and reconfigurable electronics thanks to their fluidic nature and excellent conductivity. These LMs possess attractive optical properties for photonics applications as well. However, due to the high surface tension of the LMs, it is challenging to form LM nanostructures with arbitrary shapes using conventional nanofabrication techniques. As a result, LM-based nanophotonics has not been extensively explored. Here, a simple yet effective technique is demonstrated to deterministically fabricate LM nanopatterns with high yield over a large area. This technique demonstrates for the first time the capability to fabricate LM nanophotonic structures of various precisely defined shapes and sizes using two different LMs, that is, liquid gallium and liquid eutectic gallium-indium alloy. High-density arrays of LM nanopatterns with critical feature sizes down to ≈100 nm and inter-pattern spacings down to ≈100 nm are achieved, corresponding to the highest resolution of any LM fabrication technique developed to date. Additionally, the LM nanopatterns demonstrate excellent long-term stability under ambient conditions. This work paves the way toward further development of a wide range of LM nanophotonics technologies and applications.

2.
Nano Lett ; 23(17): 7883-7889, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37579260

RESUMEN

Molecular-level spectroscopy is crucial for sensing and imaging applications, yet detecting and quantifying minuscule quantities of chemicals remain a challenge, especially when they surface adsorb in low numbers. Here, we introduce a photothermal spectroscopic technique that enables the high selectivity sensing of adsorbates with an attogram detection limit. Our approach utilizes the Seebeck effect in a microfabricated nanoscale thermocouple junction, incorporated into the apex of a microcantilever. We observe minimal thermal mass exhibited by the sensor, which maintains exceptional thermal insulation. The temperature variation driving the thermoelectric junction arises from the nonradiative decay of molecular adsorbates' vibrational states on the tip. We demonstrate the detection of photothermal spectra of physisorbed trinitrotoluene (TNT) and dimethyl methylphosphonate (DMMP) molecules, as well as representative polymers, with an estimated mass of 10-18 g.

3.
ACS Sens ; 7(1): 225-234, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35025508

RESUMEN

Palladium has long been explored for use in gas sensors because of its excellent catalytic properties and its unique property of forming hydrides in the presence of H2. However, pure Pd-based sensors usually suffer from low response and a relatively high limit of detection. Palladium nanosheets (PdNS) are of particular interest for gas sensing applications due to their high surface area and excellent electrical conductivity. Here, we demonstrate the design and fabrication of low-cost PdNS-based dual gas sensors for room-temperature detection of H2 and CO over a wide concentration range. We fabricated sensors using multiwalled carbon nanotube@PdNS (MWCNT@PdNS) composites and compared their performance against pure PdNS devices for hydrogen sensing based on electrical resistive response. Devices using PdNS alone had a response and response time of 0.4% and 50 s, respectively, to 1% H2 in air. MWCNT@PdNS (1:5 mass ratio) showed enhanced performance at a lower hydrogen concentration with a limit of detection (LODH2) of 5 ppm. Nearly an order of magnitude increase in response was observed on increasing the amount of MWCNT to 50 mass % in the nanocomposite, but the response fell off at low H2 concentration. Overall, these PdNS-based sensors were found to show good repeatability, stability, and performance under humid conditions. Their response was selective for H2versus CH4, CO2, and NH3; the response to CO was comparable in magnitude but opposite in sign to the response to H2. Upon simultaneous exposure to equal concentrations (10 ppm each) of H2 and CO, the response to CO was dominant. The PdNS showed high sensitivity to CO, detecting as little as 1 ppm CO in air at room temperature. The sensitivity to CO could be used either in a stand-alone room-temperature CO detector, where H2 is known not to be present, or in combination with CO and combustible gas detectors to distinguish H2 from other combustible gases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA