Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 119(3): 1226-1238, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796842

RESUMEN

Enhancing the efficiency of photosynthesis represents a promising strategy to improve crop yields, with keeping the steady state of PSII being key to determining the photosynthetic performance. However, the mechanisms whereby the stability of PSII is maintained in oxygenic organisms remain to be explored. Here, we report that the Psb28 protein functions in regulating the homeostasis of PSII under different light conditions in Arabidopsis thaliana. The psb28 mutant is much smaller than the wild-type plants under normal growth light, which is due to its significantly reduced PSII activity. Similar defects were seen under low light and became more pronounced under photoinhibitory light. Notably, the amounts of PSII core complexes and core subunits are specifically decreased in psb28, whereas the abundance of other representative components of photosynthetic complexes remains largely unaltered. Although the PSII activity of psb28 was severely reduced when subjected to high light, its recovery from photoinactivation was not affected. By contrast, the degradation of PSII core protein subunits is dramatically accelerated in the presence of lincomycin. These results indicate that psb28 is defective in the photoprotection of PSII, which is consistent with the observation that the overall NPQ is much lower in psb28 compared to the wild type. Moreover, the Psb28 protein is associated with PSII core complexes and interacts mainly with the CP47 subunit of PSII core. Taken together, these findings reveal an important role for Psb28 in the protection and stabilization of PSII core in response to changes in light environments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema II , Arabidopsis/metabolismo , Arabidopsis/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Lincomicina/farmacología , Mutación
2.
Nano Lett ; 24(7): 2299-2307, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334593

RESUMEN

Organic-inorganic hybrid perovskites have attracted tremendous attention owing to their fascinating optoelectronic properties. However, their poor air stability seriously hinders practical applications, which becomes more serious with thickness down to the nanoscale. Here we report a one-step vapor phase growth of HC(NH2)2PbBr3 (FAPbBr3) single-crystalline nanosheets of tunable size up to 50 µm and thickness down to 20 nm. The FAPbBr3 nanosheets demonstrate high stability for over months of exposure to air with no degradation in surface roughness and photoluminescence efficiency. Besides, the FAPbBr3 photodetectors exhibit superior overall performance as compared to previous devices based on nonlayered perovskite nanosheets, such as an ultralow dark current of 24 pA, an ultrahigh responsivity of 1033 A/W, an external quantum efficiency over 3000%, a rapid response time around 25 ms, and a high on/off ratio of 104. This work provides a strategy to tackle the challenges of hybrid perovskites toward integrated optoelectronics with requirements of nanoscale thickness, high stability, and excellent performance.

3.
Small ; : e2403490, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031997

RESUMEN

The miniaturization, integration, and increased power of electronic devices have exacerbated serious heat dissipation issues. Thermally conductive adhesives, which effectively transfer heat and firmly bond components, are critical for addressing these challenges. This paper innovatively proposed a composite comprising inorganic phosphate/alumina as a matrix and diamond as filler. The composite achieved an isotropic thermal conductivity (TC) of up to 18.96 W m-1 K-1, significantly surpassing existing reports while maintaining electrical insulation. First-principles calculations and experimental tests confirmed that the high TC of phosphate and excellent interface contact ensured efficient heat transfer. To optimize bonding performance, a modified-diamond/Al(H2PO4)3@epoxy hybrid composite is subsequently developed using an organic modification method. The unique hybrid structure, combining inorganic thermal pathways and an organic adhesive network, enabled the hybrid composite to simultaneously possess a high TC (3.23 W m-1 K-1) and strong adhesion (14.35 MPa). Compared to previous reports, the comprehensive performance of this hybrid thermally conductive adhesive is exceptionally remarkable. The superior heat dissipation capability of the hybrid thermal adhesive is demonstrated in chip cooling scenarios. This organic/inorganic hybrid approach offered a new direction for obtaining advanced thermal interface materials, demonstrating significant application potential in chip soldering, packaging, and heat dissipation.

4.
Small ; : e2402527, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888122

RESUMEN

Aqueous zinc-iodine batteries are promising candidates for large-scale energy storage due to their high energy density and low cost. However, their development is hindered by several drawbacks, including zinc dendrites, anode corrosion, and the shuttle of polyiodides. Here, the design of 2D-shaped tungsten boride nanosheets with abundant borophene subunits-based active sites is reported to guide the (002) plane-dominated deposition of zinc while suppressing side reactions, which facilitates interfacial nucleation and uniform growth of zinc. Meanwhile, the interfacial d-band orbits of tungsten sites can further enhance the anchoring of polyiodides on the surface, to promote the electrocatalytic redox conversion of iodine. The resulting tungsten boride-based I2 cathodes in zinc-iodine cells exhibit impressive cyclic stability after 5000 cycles at 50 C, which accelerates the practical applications of zinc-iodine batteries.

5.
Appl Environ Microbiol ; 90(3): e0007024, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38385702

RESUMEN

Nitrogen availability limits the net primary productivity in alpine meadows on the Qinghai-Tibetan Plateau, which is regulated by ammonia-oxidizing microorganisms. However, little is known about the elevational patterns of soil ammonia oxidizers in alpine meadows. Here, we investigated the potential nitrification rate (PNR), abundance, and community diversity of soil ammonia-oxidizing microorganisms along the altitudinal gradient between 3,200 and 4,200 m in Qinghai-Tibetan alpine meadows. We found that both PNR and amoA gene abundance declined from 3,400 to 4,200 m but lowered at 3,200 m, possibly due to intense substrate competition and biological nitrification inhibition from grasses. The primary contributors to soil nitrification were ammonia-oxidizing archaea (AOA), and their proportionate share of soil nitrification increased with altitude in comparison to ammonia-oxidizing bacteria (AOB). The alpha diversity of AOA increased by higher temperature and plant richness at low elevations, while decreased by higher moisture and low legume biomass at middle elevations. In contrast, the alpha diversity of AOB increased along elevation. The elevational patterns of AOA and AOB communities were primarily driven by temperature, soil moisture, and vegetation. These findings suggest that elevation-induced climate changes, such as shifts in temperature and water conditions, could potentially alter the soil nitrification process in alpine meadows through changes in vegetation and soil properties, which provide new insights into how soil ammonia oxidizers respond to climate change in alpine meadows.IMPORTANCEThe importance of this study is revealing that elevational patterns and nitrification contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities were primarily driven by temperature, soil moisture, and vegetation. Compared to AOB, the relative contribution of AOA to soil nitrification increased at higher elevations. The research highlights the potential impact of elevation-induced climate change on nitrification processes in alpine meadows, mediated by alterations in vegetation and soil properties. By providing new insights into how ammonia oxidizers respond to climate change, this study contributes valuable knowledge to the field of microbial ecology and helps predict ecological responses to environmental changes in alpine meadows.


Asunto(s)
Bacterias , Suelo , Bacterias/genética , Suelo/química , Amoníaco , Nitrificación , Oxidación-Reducción , Microbiología del Suelo , Archaea/genética , Filogenia
6.
Plant Physiol ; 192(1): 274-292, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36746783

RESUMEN

Drought stress poses a serious threat to global agricultural productivity and food security. Plant resistance to drought is typically accompanied by a growth deficit and yield penalty. Herein, we report a previously uncharacterized, dicotyledon-specific gene, Stress and Growth Interconnector (SGI), that promotes growth during drought in the oil crop rapeseed (Brassica napus) and the model plant Arabidopsis (Arabidopsis thaliana). Overexpression of SGI conferred enhanced biomass and yield under water-deficient conditions, whereas corresponding CRISPR SGI mutants exhibited the opposite effects. These attributes were achieved by mediating reactive oxygen species (ROS) homeostasis while maintaining photosynthetic efficiency to increase plant fitness under water-limiting environments. Further spatial-temporal transcriptome profiling revealed dynamic reprogramming of pathways for photosynthesis and stress responses during drought and the subsequent recovery. Mechanistically, SGI represents an intrinsically disordered region-containing protein that interacts with itself, catalase isoforms, dehydrins, and other drought-responsive positive factors, restraining ROS generation. These multifaceted interactions stabilize catalases in response to drought and facilitate their ROS-scavenging activities. Taken altogether, these findings provide insights into currently underexplored mechanisms to circumvent trade-offs between plant growth and stress tolerance that will inform strategies to breed climate-resilient, higher yielding crops for sustainable agriculture.


Asunto(s)
Arabidopsis , Sequías , Especies Reactivas de Oxígeno/metabolismo , Fitomejoramiento , Arabidopsis/metabolismo , Agua/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
Cancer Cell Int ; 24(1): 105, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475858

RESUMEN

Immune microenvironment and immunotherapy have become the focus and frontier of tumor research, and the immune checkpoint inhibitors has provided novel strategies for tumor treatment. Malignant pleural effusion (MPE) is a common end-stage manifestation of lung cancer, malignant pleural mesothelioma and other thoracic malignancies, which is invasive and often accompanied by poor prognosis, affecting the quality of life of affected patients. Currently, clinical therapy for MPE is limited to pleural puncture, pleural fixation, catheter drainage, and other palliative therapies. Immunization is a new direction for rehabilitation and treatment of MPE. The effusion caused by cancer cells establishes its own immune microenvironment during its formation. Immune cells, cytokines, signal pathways of microenvironment affect the MPE progress and prognosis of patients. The interaction between them have been proved. The relevant studies were obtained through a systematic search of PubMed database according to keywords search method. Then through screening and sorting and reading full-text, 300 literatures were screened out. Exclude irrelevant and poor quality articles, 238 literatures were cited in the references. In this study, the mechanism of immune microenvironment affecting malignant pleural effusion was discussed from the perspectives of adaptive immune cells, innate immune cells, cytokines and molecular targets. Meanwhile, this study focused on the clinical value of microenvironmental components in the immunotherapy and prognosis of malignant pleural effusion.

8.
Transfusion ; 64(2): 367-379, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174435

RESUMEN

BACKGROUND: Platelet concentrates (PCs) could be prepared using either whole-blood processes or apheresis instruments. During collection, processing and storage, some biochemical and functional changes occur, which may result in quality reduction. Quality evaluation of PCs may be helpful for the precise control of platelet (PLT) inventory to reduce the risk of refractoriness and adverse effects caused by platelet transfusion. STUDY DESIGN AND METHODS: The study was aimed to evaluate the quality of PCs which were produced by five processes: apheresis (AP) procedures (using three different cell separators: Amicus, Trima Accel and MCS+ instruments), platelet rich plasma (PRP), and buffy coat (BC). A total of 100 PCs (20 of each group) were assessed in respect of routine quality control, morphology, size distribution, destroyed and activated platelets, and production of platelet-derived microparticles (PMPs). RESULTS: All PCs have satisfied the recommended quality of volume, platelet count, residual WBC count, residual RBC count, pH, and sterility according to the Chinese Technical Manual. There was no difference among the 5 groups in morphology and size of PLT and PMPs. Dynamic light scattering test showed that apheresis PCs showed peaks around 10-20 nm, but not whole blood-derived PCs. PCs prepared by Amicus had the relatively high percentage of destroyed platelet, activated platelets and PMPs than other groups. DISCUSSION: The data suggested high heterogeneity of PMPs, destroyed and activated platelets in PCs produced by different processes, which might be helpful to manage the platelet inventory for targeted use.


Asunto(s)
Eliminación de Componentes Sanguíneos , Micropartículas Derivadas de Células , Plasma Rico en Plaquetas , Humanos , Eliminación de Componentes Sanguíneos/métodos , Plaquetas , Recuento de Plaquetas , Conservación de la Sangre/métodos
9.
Plant Dis ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243183

RESUMEN

Alternanthera philoxeroides is a perennial herbaceous plant used as a forage crop (Wang et al. 2005) and is known to have medicinal properties. One of notable active components is flavonoids, which have been found to exhibit anti-Hepatitis B Virus activity (Li et al. 2016). In 2021, a leaf spot on A. philoxeroides was observed in the science and education experimental park of Hebei Agricultural University (38°49'38″ N, 115°26'39″ E). Initial symptoms included leaf tissue water loss, chloro-sis and elliptical lesions scattered across the leaf margin with further development leading to ellipse-shaped disease spots and leaf wilting (Fig. 1A). In the field, 50 plants of A. philoxeroides were randomly selected to investigate and quantify dis-ease. Incidence of leaf disease was approximately 25%, and the infected leaves ex-hibited an average affected area of about 20%. In order to identify the pathogen, three diseased plants were randomly selected from different areas. Stems and leaves of diseased plants were cut into pieces (2 to 3 mm × 5 mm) and disinfested with 1% sodium hypochlorite for 1 minute. After rinsing with sterile water three times, each lesion sample was isolated and purified on PDA at 25°C. Eventually, all samples pro-duced morphologically consistent colonies of pure strains. From the 9 isolates ob-tained, ZLQ-1 was selected as a representative isolate for further study. Colonies were initially white, turning gray from the centre, then gray-brown with cottony aerial hyphae, and finally growing black, stiff, round or irregular sclerotia (0.6 to 4.0 mm × 1.1 to 4.2 mm, n=50) (Fig1. B, C). ZLQ-1 exhibited branched conidia with en-larged apical cells. The conidia of this isolate were unicellular, ovoid or ellipsoid in shape, with dimensions ranging from 5.8 to 16.9 µm × 6.3 to 11.2 µm (n=50) (Fig. 1D). These morphological characteristics were consistent with Botrytis cinerea (Ellis, 1971). The genes of internal transcribed spacer (ITS), heat shock protein (HSP60), DNA-dependent RNA polymerase subunit II (RPB2), and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were amplified with specific primers ITS1/ITS4, HSP60-F/HSP60-R, RPB2-F/RPB2-R and G3PDH-F/G3PDH-R (Aktaruzzaman et al., 2022). Sequences were deposited into GenBank with accession numbers ON479490 for ITS, ON572246 for G3PDH, ON572248 for HSP60, ON572247 for RPB2. BLASTn analysis showed that the ITS sequence shared 99.62% similarity to B. cinerea (CP009808), and the sequences of the other three nuclear protein-encoding genes (G3PDH, HSP60, and RPB2) showed at least 99.9% identity with the genome of B. ci-nerea (B05.10) (Staats et al. 2005). We have inoculated 10 healthy A. philoxeroides leaves with a suspension of 1x105 spores/mL, and used sterile water treatment as control (Aktaruzzaman et al., 2022). Each leaf was inoculated with 10 µL spore sus-pension. After 7 days in a controlled incubation environment (25℃, 40%RH), the plants inoculated with conidial suspensions displayed lesions covered in a gray-white mycelial layer, resembling those observed in the field (Fig. 1E-G). In con-trast, the plants inoculated with sterile water remained unaffected. Morphological and PCR analysis confirmed that the pathogen responsible for the observed symp-toms was B. cinerea. Koch's postulates were fulfilled as the same pathogen was con-sistently re-isolated from the inoculated leaves and confirmed to be B. cinerea through morphological and molecular methods. This is the first reported case of B. cinerea causing gray mold on A. philoxeroides in China. It is important to monitor and prevent B. cinerea infection during cultivation to ensure the production of healthy Chinese medicine and feed.

10.
Sensors (Basel) ; 24(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793922

RESUMEN

Electrical tomography sensors have been widely used for pipeline parameter detection and estimation. Before they can be used in formal applications, the sensors must be calibrated using enough labeled data. However, due to the high complexity of actual measuring environments, the calibrated sensors are inaccurate since the labeling data may be uncertain, inconsistent, incomplete, or even invalid. Alternatively, it is always possible to obtain partial data with accurate labels, which can form mandatory constraints to correct errors in other labeling data. In this paper, a semi-supervised fuzzy clustering algorithm is proposed, and the fuzzy membership degree in the algorithm leads to a set of mandatory constraints to correct these inaccurate labels. Experiments in a dredger validate the proposed algorithm in terms of its accuracy and stability. This new fuzzy clustering algorithm can generally decrease the error of labeling data in any sensor calibration process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA