Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Res ; 248: 118277, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266895

RESUMEN

Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO3-) and oxygen (O2) as electron acceptors in MAR on water quality and safety. Notably, NO3-, acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O2. However, a direct comparison between NO3- and O2 remains unexplored. This study assessed risks in MAR effluent induced by NO3- and O2, alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO3- as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O2, primarily due to a decrease in soluble microbial product production. Furthermore, NO3- significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO3- MAR compared to O2. This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO3- influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO3- influence. Thus, NO3- as an electron acceptor in MAR elevates ARG and HBP risks compared to O2, potentially compromising groundwater quality and safety.


Asunto(s)
Antibacterianos , Agua Subterránea , Humanos , Antibacterianos/farmacología , Electrones , Bacterias , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Oxígeno , Agua Subterránea/microbiología
2.
J Nanosci Nanotechnol ; 19(7): 4244-4248, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30764999

RESUMEN

Ultrafine droplets play important roles in many fields. Here, we prepare ultrafine droplets with volumes in femtoliter scale by applying an electrostatic field between a needle and substrate. The diameter of liquid is reduced significantly to about 1/50 that of the needle tip. By using some solvents consisting of small molecules, ultrafine droplets eject from the needle tip. The volume of the ultrafine droplets depend on the strength of the electrostatic field and properties of the liquid. Ultrafine droplets containing perovskite quantum dots are also ejected on the substrate by using this jetting method. The ultrafine droplets have great potentials in carrying tiny amount of quantum dots and even molecules for various applications.

3.
Small ; 13(26)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28514058

RESUMEN

It is of great importance to investigate the crystallization of organometallic perovskite from solution for enhancing performance of perovskite solar cells. Here, this study develops a facile method for in situ observation of crystallization and growth of the methylammonium lead iodide (MAPbI3 ) perovskite from microdroplets ejected by an alternating viscous and inertial force jetting method. It is found that there are two crystallization modes when MAPbI3 grows from the CH3 NH3 I (MAI)/PbI2 /N,N-dimethylformamide (DMF) solution: needle precursors and granular perovskites. Generally, needle Lewis adduct of MAPbI3 ·DMF tends to nucleate and grow from the solution due to low solubility of PbI2 . The growth of MAPbI3 ·DMF depends on both the concentration of MAI and temperature. It tends to form large perovskite domains on substrates at high temperature. The MAPbI3 ·DMF coverts to nanocrystalline perovskite due to lattice shrinkage when DMF molecules escape from the Lewis adduct. Granular perovskite can also directly nucleate from the solution at high concentration of MAI due to compositional segregation.

4.
J Control Release ; 365: 833-847, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065414

RESUMEN

Tumor metastasis is a significant contributor to the mortality of cancer patients. Specifically, current conventional treatments are unable to achieve complete remission of brain metastasis. This is due to the unique pathological environment of brain metastasis, which differs significantly from peripheral metastasis. Brain metastasis is characterized by high tumor mutation rates and a complex microenvironment with immunosuppression. Additionally, the presence of blood-brain barrier (BBB)/blood tumor barrier (BTB) restricts drug leakage into the brain. Therefore, it is crucial to take account of the specific characteristics of brain metastasis when developing new therapeutic strategies. Nanomaterials offer promising opportunities for targeted therapies in treating brain metastasis. They can be tailored and customized based on specific pathological features and incorporate various treatment approaches, which makes them advantageous in advancing therapeutic strategies for brain metastasis. This review provides an overview of current clinical treatment options for patients with brain metastasis. It also explores the roles and changes that different cells within the complex microenvironment play during tumor spread. Furthermore, it highlights the use of nanomaterials in current brain treatment approaches.


Asunto(s)
Neoplasias Encefálicas , Nanoestructuras , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo/patología , Barrera Hematoencefálica/patología , Sistemas de Liberación de Medicamentos , Microambiente Tumoral
5.
Food Chem ; 456: 140031, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38870821

RESUMEN

Lyonia ovalifolia (Wall.) Drude (LO) is mainly distributed in China with health benefits. In this study, LO buds (LOB) were extracted by ultrasonic extraction (UE) with or without ultra-high-pressure (UHP-UE), microwave (MW-UE), subcritical (SC-UE) techniques. The metabolomic result showed that a total of 960 chemical compounds and 117 differential compounds were identified from LOB extracts. The UHP-UE extract was rich in total polyphenol and flavonoid contents, followed by MW-UE, UE and SC-UE extracts, respectively. All LOB extracts increased superoxide dismutase (SOD) and catalase (CAT) activities, and glutathione (GSH) content, decreased reactive oxygen species (ROS) accumulation, levels of interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor -α (TNF-α), and nitric oxide (NO), and alleviated apoptosis in cells. The cellular protective effect was UHP-UE > MW-UE > UE > SC-UE. This study revealed that higher pressure and lower temperature may be key factors for increasing bioactivities of LOB extracts.


Asunto(s)
Metabolómica , Extractos Vegetales , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Animales , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/análisis , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación , Ratones , Óxido Nítrico/metabolismo , Humanos , Catalasa/metabolismo , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología
6.
J Fungi (Basel) ; 10(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39057357

RESUMEN

Pleurotus tuoliensis is a unique species discovered in Xinjiang, China, which is recognized for its significant edible, medicinal, and economic value. It has been successfully incorporated into industrial production. Controversy has emerged concerning the evolution and environmental adaptability of this species due to inadequate interspecific ecology and molecular data. This study examines the germplasm resources of P. tuoliensis in the Xinjiang region. A total of 225 wild and cultivated strains of P. tuoliensis were gathered from seven representative regions. Phylogenetic analysis revealed that seven populations were notably segregated into three distinct groups, primarily attributed to environmental factors as the underlying cause for this differentiation. Population historical size data indicate that P. tuoliensis underwent two expansion events, one between 2 and 0.9 Mya (Miocene) and the other between 15 and 4 Mya (Early Pleistocene). The ancient climate fluctuations in the Xinjiang region might have contributed to the comparatively modest population size during the Pliocene epoch. Moreover, through the integration of biogeography and ancestral state reconstruction, it was determined that group C of P. tuoliensis emerged initially and subsequently dispersed to groups D and B, in that order. Subsequently, group D underwent independent evolution, whereas group B continued to diversify into groups A and EFG. The primary factor influencing this mode of transmission route is related to the geographical conditions and prevailing wind direction of each group. Subsequent research endeavors focused on assessing the domestication adaptability of P. tuoliensis to different substrates. It was found that the metabolic processes adapted during the domestication process were mainly related to energy metabolism, DNA repair, and environmental adaptability. Processes adapted to the host adaptability include responses to the host (meiosis, cell cycle, etc.) and stress in the growth environment (cysteine and methionine metabolism, sulfur metabolism, etc.). This study analyzed the systematic evolution and genetic differentiation of P. tuoliensis in Xinjiang. The identified loci and genes provide a theoretical basis for the subsequent improvement of germplasm resources and conducting molecular breeding.

7.
Adv Mater ; 36(26): e2312219, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608672

RESUMEN

Targeting the competitive-cooperative relationships among tumor cells and various immune cells can efficiently reverse the immune-dysfunction microenvironment to boost the immunotherapies for the triple-negative breast cancer treatment. Hence, a bacterial outer membrane vesicle-based nanocomplex is designed for specifically targeting malignant cells and immune cells to reconcile the relationships based on metabolic-immune crosstalk. By uniquely utilizing the property of charge-reversal polymers to realize function separation, the nanocomplexes could synergistically regulate tumor cells and immune cells. This approach could reshape the immunosuppressive competition-cooperation pattern into one that is immune-responsive, showcasing significant potential for inducing tumor remission in TNBC models.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Humanos , Animales , Línea Celular Tumoral , Ratones , Microambiente Tumoral/efectos de los fármacos , Femenino , Inmunoterapia , Nanopartículas/química
8.
Cell Death Dis ; 15(1): 6, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177123

RESUMEN

Glioma cell sensitivity to temozolomide (TMZ) is critical for effective treatment and correlates with patient survival, although mechanisms underlying this activity are unclear. Here, we reveal a new mechanism used by glioma cells to modulate TMZ sensitivity via regulation of SORBS2 and DDR1 genes by super-enhancer RNA LINC02454. We report that LINC02454 activity increases glioma cell TMZ sensitivity by maintaining long-range chromatin interactions between SORBS2 and the LINC02454 enhancer. By contrast, LINC02454 activity also decreased glioma cell TMZ sensitivity by promoting DDR1 expression. Our study suggests a bivalent function for super-enhancer RNA LINC02454 in regulating glioma cell sensitivity to TMZ.


Asunto(s)
Neoplasias Encefálicas , Glioma , MicroARNs , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , ARN Potenciadores , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , MicroARNs/genética , Proliferación Celular , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico
9.
J Hazard Mater ; : 133749, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38383276

RESUMEN

The superoxide radical (•O2-)-mediated peroxymonosulfate (PMS)-based photo-Fenton-like reaction enables highly selective water decontamination. Nevertheless, the targeted construction of •O2--mediated photo-Fenton-like system has been challenging. Herein, we developed an electron-rich/-poor dual sites driven •O2--mediated cascade photo-Fenton-like system by modulating electron density. Experimental and theoretical results demonstrated that PMS was preferentially adsorbed on electron-poor Co site. This adsorption promoted O-O bond cleavage of PMS to generate hydrogen peroxide (H2O2), which then migrated to electron-rich O site to extract eg electrons for O-H bond cleavage, rather than competing with PMS for Co site. The developed versatile cascade reaction system could selectively eliminate contaminants with low n-octanol/water partition constants (KOW) and dissociation constants (pKa) and remarkably resist inorganics (Cl-, H2PO4- and NO3-), humic acid (HA) and even real water matrices (tap water and secondary effluent). This finding provided a novel and plausible strategy to accurately and efficiently generate •O2- for the selective water decontamination.

10.
ACS Nano ; 17(18): 18164-18177, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37703316

RESUMEN

Reperfusion injury presents a significant obstacle to neuronal survival following successful recanalization in ischemic stroke, which is characterized by intricate pathophysiological processes comprising numerous interconnected pathways. Oxidative stress-induced neuronal ferroptosis and the overactivation of glial cells play important roles in this phenomenon. In this study, we developed a targeted cross-linked micelle loaded with idebenone to rescue the ischemic penumbra by inhibiting neuronal ferroptosis and glial overactivation. In rat models, the CREKA peptide-modified micelles accumulate in the damaged brain via binding to microthrombi in the ipsilateral microvessels. Upon reactive oxygen species (ROS) stimulation, diselenide bonds within the micelles are transformed to hydrophilic seleninic acids, enabling synchronized ROS consumption and responsive drug release. The released idebenone scavenges ROS, prevents oxidative stress-induced neuronal ferroptosis, attenuates glial overactivation, and suppresses pro-inflammatory factors secretion, thereby modulating the inflammatory microenvironment. Finally, this micelle significantly reinforces neuronal survival, reduces infarct volume, and improves behavioral function compared to the control groups. This pleiotropic therapeutic micelle provides a proof-of-concept of remodeling the lesion microenvironment by inhibiting neuronal ferroptosis and glial overactivation to treat cerebral ischemia-reperfusion injury.


Asunto(s)
Ferroptosis , Daño por Reperfusión , Animales , Ratas , Micelas , Especies Reactivas de Oxígeno , Neuroglía , Daño por Reperfusión/tratamiento farmacológico
11.
Acta Pharm Sin B ; 13(1): 298-314, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815033

RESUMEN

Metastasis accounts for 90% of breast cancer deaths, where the lethality could be attributed to the poor drug accumulation at the metastatic loci. The tolerance to chemotherapy induced by breast cancer stem cells (BCSCs) and their particular redox microenvironment further aggravate the therapeutic dilemma. To be specific, therapy-resistant BCSCs can differentiate into heterogeneous tumor cells constantly, and simultaneously dynamic maintenance of redox homeostasis promote tumor cells to retro-differentiate into stem-like state in response to cytotoxic chemotherapy. Herein, we develop a specifically-designed biomimic platform employing neutrophil membrane as shell to inherit a neutrophil-like tumor-targeting capability, and anchored chemotherapeutic and BCSCs-differentiating reagents with nitroimidazole (NI) to yield two hypoxia-responsive prodrugs, which could be encapsulated into a polymeric nitroimidazole core. The platform can actively target the lung metastasis sites of triple negative breast cancer (TNBC), and release the escorted drugs upon being triggered by the hypoxia microenvironment. During the responsiveness, the differentiating agent could promote transferring BCSCs into non-BCSCs, and simultaneously the nitroimidazole moieties conjugated on the polymer and prodrugs could modulate the tumor microenvironment by depleting nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) and amplifying intracellular oxidative stress to prevent tumor cells retro-differentiation into BCSCs. In combination, the BCSCs differentiation and tumor microenvironment modulation synergistically could enhance the chemotherapeutic cytotoxicity, and remarkably suppress tumor growth and lung metastasis. Hopefully, this work can provide a new insight in to comprehensively treat TNBC and lung metastasis using a versatile platform.

12.
iScience ; 26(4): 106497, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37096036

RESUMEN

To date, genome-wide association studies (GWAS) have revealed over 200 genetic risk loci associated with prostate cancer; yet, true disease-causing variants remain elusive. Identification of causal variants and their targets from association signals is complicated by high linkage disequilibrium and limited availability of functional genomics data for specific tissue/cell types. Here, we integrated statistical fine-mapping and functional annotation from prostate-specific epigenomic profiles, 3D genome features, and quantitative trait loci data to distinguish causal variants from associations and identify target genes. Our fine-mapping analysis yielded 3,395 likely causal variants, and multiscale functional annotation linked them to 487 target genes. We prioritized rs10486567 as a genome-wide top-ranked SNP and predicted HOTTIP as its target. Deletion of the rs10486567-associated enhancer in prostate cancer cells decreased their capacity for invasive migration. HOTTIP overexpression in enhancer-KO cell lines rescued defective invasive migration. Furthermore, we found that rs10486567 regulates HOTTIP through allele-specific long-range chromatin interaction.

13.
Bioact Mater ; 27: 474-487, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37159612

RESUMEN

A long-standing paucity of effective therapies results in the poor outcomes of triple-negative breast cancer brain metastases. Immunotherapy has made progress in the treatment of tumors, but limited by the non-immunogenicity of tumors and strong immunosuppressive environment, patients with TNBC brain metastases have not yet benefited from immunotherapy. Dual immunoregulatory strategies with enhanced immune activation and reversal of the immunosuppressive microenvironment provide new therapeutic options for patients. Here, we propose a cocktail-like therapeutic strategy of microenvironment regulation-chemotherapy-immune synergistic sensitization and construct reduction-sensitive immune microenvironment regulation nanomaterials (SIL@T). SIL@T modified with targeting peptide penetrates the BBB and is subsequently internalized into metastatic breast cancer cells, releasing silybin and oxaliplatin responsively in the cells. SIL@T preferentially accumulates at the metastatic site and can significantly prolong the survival period of model animals. Mechanistic studies have shown that SIL@T can effectively induce immunogenic cell death of metastatic cells, activate immune responses and increase infiltration of CD8+ T cells. Meanwhile, the activation of STAT3 in the metastatic foci is attenuated and the immunosuppressive microenvironment is reversed. This study demonstrates that SIL@T with dual immunomodulatory functions provides a promising immune synergistic therapy strategy for breast cancer brain metastases.

14.
Acta Biomater ; 167: 387-400, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276955

RESUMEN

The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) is the main block for the penetration of chemotherapy. In the tumor microenvironment, a dense matrix composed of fibrin is formed on the exterior, while the interior is featured by high reduction, hypoxia and low pH. How to match the special microenvironment to on-demand drug release is the key to improve chemotherapeutic efficacy. Herein, a microenvironment-responsive micellar system is developed to deepen tumoral penetration. Briefly, the conjugation of a fibrin-targeting peptide to PEG-poly amino acid has been utilized to achieve accumulation of micelles in the tumor stroma. By modification of micelles with hypoxia-reducible nitroimidazole which becomes protonated under acidic conditions, their surface charge is more positive, facilitating deeper penetration into tumors. Paclitaxel was loaded onto the micelles via a disulfide bond to enable glutathione (GSH)-responsive release. Therefore, the immunosuppressive microenvironment is relived through the alleviation of hypoxia and depletion of GSH. Hopefully, this work could establish paradigms by designing sophisticated drug-delivery systems to tactfully employ and retroact the tamed tumoral microenvironment to improve the therapeutic efficacy based on understanding the multiple hallmarks and learning the mutual regulation. STATEMENT OF SIGNIFICANCE: Tumor microenvironment(TME) is an unique pathological feature of pancreatic cancer and an inherent barrier to chemotherapy. Numerous studies regard TME as the targets for drug delivery. In this work, we propose a hypoxia-responsive nanomicellar drug delivery system that aiming hypoxia TME of pancreatic cancer. The nanodrug delivery system could respond to the hypoxic microenvironment and enhance the penetration of the inner tumor at the same time preserving the outer tumor stroma, thus achieving targeted treatment of PDAC by preserving the integrity of the outer stroma. Simultaneously, the responsive group can reverse the degree of hypoxia in TME by disrupting the redox balance in the tumor region, thus achieving precise treatment of PDAC by matching the pathological characteristics of TME. We believe our article would provide new design ideas for the future treatments for pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Micelas , Microambiente Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Hipoxia , Glutatión , Terapia de Inmunosupresión , Línea Celular Tumoral , Neoplasias Pancreáticas
15.
Water Res ; 218: 118524, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35526356

RESUMEN

Coupling the cultivation of microalgae with wastewater treatment is a promising technology to recover bioresources from wastewater. However, toxic pollutants in wastewater seriously inhibit the growth of microalgae and the removal of pollutants. Phenolic acids are similar to phytohormones, could potentially relieve the toxicity to microalgae and simultaneously promote pollutant degradation and lipid accumulation. Chlorella and 4-chlorophenol (4-CP) were utilized to simulate the toxic wastewater treatment, and the roles of two typical phenolic acids, such as p-hydroxybenzoic acid (p-HBA) and caffeic acid (CA), were explored. The 0.2 µM concentration of p-HBA or CA improved the specific growth rate by 7.6% by enhancing photosynthesis and DNA replication. The oxidative damage caused by 4-CP was reduced by 30.3-49.7% via the synthesis of more antioxidant enzymes and the direct scavenging of free radicals by phenolic acids. Furthermore, the 4-CP removal rate increased by 27.0%, and toxic 4-CP was degraded into non-toxic compounds. The phenolic acids did not change the 4-CP degradation pathway but accelerated its removal and detoxification by enhancing the expression of 4-CP degradation enzymes. Simultaneously, lipid production increased by 20.5-23.1% due to the upregulation of enzymes related to fatty acid and triacylglycerol synthesis. Trace phenolic acids stimulated the mitogen-activated protein kinase signaling cascade and the calcium signaling pathway to regulate the physiology of the microalgae and protect cells from toxic stress. This study provides a promising new strategy for toxic wastewater treatment and bioresource recovery.


Asunto(s)
Chlorella , Clorofenoles , Contaminantes Ambientales , Microalgas , Biocombustibles , Biomasa , Chlorella/metabolismo , Clorofenoles/metabolismo , Contaminantes Ambientales/metabolismo , Hidroxibenzoatos/metabolismo , Lípidos , Microalgas/metabolismo , Aguas Residuales
16.
Chemosphere ; 307(Pt 2): 135829, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948092

RESUMEN

Coupling microalgae cultivation with wastewater treatment is a promising environmentally sustainable development strategy. However, toxics such as Bisphenol A (BPA) in wastewater damage microalgae cells and reduces bioresources production. Phytohormone regulation has the potential to solve this issue. However, phytohormone research is still in its infancy. In this work, 0.2 µM naphthyl acetic acid (NAA) significantly enhanced Chlorella vulgaris BPA detoxification by 127.3% and Chlorella biomass production by 46.4%. NAA helps Chlorella convert bisphenol A into small non-toxic intermediates by enhancing the expression of associated enzymes. Simultaneously, NAA promoted carbon fixation and photosynthetic metabolism. Activation of the mitogen-activated protein kinase (MAPK) pathway strengthened the downstream antioxidant system while improving photosynthesis and intracellular starch and lipid synthesis. Carbohydrates, pigment, and lipid production was significantly enhanced by 20.0%, 46.9%, and 21.8%, respectively. A new insight is provided into how phytohormones may increase microalgae in wastewater's bioresource transformation and toxicity resistance.


Asunto(s)
Chlorella vulgaris , Microalgas , Purificación del Agua , Antioxidantes/metabolismo , Compuestos de Bencidrilo , Biomasa , Carbohidratos , Chlorella vulgaris/metabolismo , Lípidos , Microalgas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ácidos Naftalenoacéticos/metabolismo , Fenoles , Reguladores del Crecimiento de las Plantas/metabolismo , Almidón/metabolismo , Aguas Residuales
17.
J Infect Dev Ctries ; 16(11): 1706-1714, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36449642

RESUMEN

INTRODUCTION: Our study aimed to investigate the performance of deep learning (DL)-based diagnostic systems in alerting against COVID-19, especially among asymptomatic individuals coming from overseas, and to analyze the features of identified asymptomatic patients in detail. METHODOLOGY: DL diagnostic systems were deployed to assist in the screening of COVID-19, including the pneumonia system and pulmonary nodules system. 1,917 overseas returnees who underwent CT examination and rRT-PCR tests were enrolled. DL pneumonia system promptly alerted clinicians to suspected COVID-19 after CT examinations while the performance was evaluated with rRT-PCR results as the reference. The radiological features of asymptomatic COVID-19 cases were described according to the Nomenclature of the Fleischner Society. RESULTS: Fifty-three cases were confirmed as COVID-19 patients by rRT-PCR tests, including 5 asymptomatic cases. DL pneumonia system correctly alerted 50 cases as suspected COVID-19 with a sensitivity of 0.9434 and specificity of 0.9592 (within 2 minutes per case); while the pulmonary nodules system alerted 2 of the 3 missed asymptomatic cases. Additionally, five asymptomatic patients presented different characteristics such as elevated creatine kinase level and prolonged prothrombin time, as well as atypical radiological features. CONCLUSIONS: DL diagnostic systems are promising complementary approaches for prompt screening of imported COVID-19 patients, even the imported asymptomatic cases. Unique clinical and radiological characteristics of asymptomatic cases might be of great value in screening as well. ADVANCES IN KNOWLEDGE: DL-based systems are practical, efficient, and reliable to assist radiologists in screening COVID-19 patients. Differential features of asymptomatic patients might be useful to clinicians in the frontline to differentiate asymptomatic cases.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , COVID-19/diagnóstico , Investigación , Radiólogos
18.
Acta Pharm Sin B ; 12(5): 2506-2521, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646523

RESUMEN

Retinal pigment epithelial (RPE) is primarily impaired in age-related macular degeneration (AMD), leading to progressive loss of photoreceptors and sometimes choroidal neovascularization (CNV). mTOR has been proposed as a promising therapeutic target, while the usage of its specific inhibitor, rapamycin, was greatly limited. To mediate the mTOR pathway in the retina by a noninvasive approach, we developed novel biomimetic nanocomplexes where rapamycin-loaded nanoparticles were coated with cell membrane derived from macrophages (termed as MRaNPs). Taking advantage of the macrophage-inherited property, intravenous injection of MRaNPs exhibited significantly enhanced accumulation in the CNV lesions, thereby increasing the local concentration of rapamycin. Consequently, MRaNPs effectively downregulated the mTOR pathway and attenuate angiogenesis in the eye. Particularly, MRaNPs also efficiently activated autophagy in the RPE, which was acknowledged to rescue RPE in response to deleterious stimuli. Overall, we design and prepare macrophage-disguised rapamycin nanocarriers and demonstrate the therapeutic advantages of employing biomimetic cell membrane materials for treatment of AMD.

19.
J Control Release ; 349: 520-532, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35820539

RESUMEN

Breast-to-brain metastatic cells can interact with the surrounding cells, including astrocytes and microglia, to generate a pro-tumorigenic niche. Breast-to-brain metastasis can be treated using a dual strategy of eliminating metastatic tumor cells and normalizing their localized microenvironment. The effective accumulation of drugs at the action site of metastasis is crucial to realizing the above strategy, especially when dealing with the blood-brain barrier (BBB)-penetrating and tumor-targeting tactics. Here, we establish an in-situ microenvironment-tailored micelle (T-M/siRNA) to co-deliver therapeutic siRNA and paclitaxel (PTX) into the breast-to-brain metastasis. Anchored with a D-type cyclic peptide, T-M/siRNA can penetrate the BBB and subsequently target the brain metastases. Upon internalization by metastatic tumor cells, T-M/siRNA can release PTX in the high-level glutathione (GSH), resulting in killing cancer cells. Meanwhile, the micellar structure is dissociated, resulting in lowering the charge density to release the loaded siRNA that can targeted downregulate the expression of protocadherin 7 (PCDH7). Treatment of model mice revealed that T-M/siRNA can inhibit the abnormal activation of astrocytes and immunosuppressive activation of microglia, resulting in significantly enhanced synergistic anti-tumor efficacy. This study indicates that the micelle system can serve as a hopeful strategy to treat breast-to-brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Carcinoma , Animales , Astrocitos/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Carcinoma/tratamiento farmacológico , Línea Celular Tumoral , Glutatión , Ratones , Ratones Endogámicos BALB C , Micelas , Paclitaxel/química , Péptidos Cíclicos/uso terapéutico , Protocadherinas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Microambiente Tumoral
20.
Biomaterials ; 287: 121599, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35777332

RESUMEN

The compact extracellular matrix (ECM) of pancreatic ductal adenocarcinoma (PDAC) is the major physical barrier that hinders the delivery of anti-tumor drugs, leading to strong inherent chemotherapy resistance as well as establishing an immunosuppressive tumor microenvironment (TME). However, forcibly destroying the stroma barrier would break the balance of delicate signal transduction and dependence between tumor cells and matrix components. Uncontrollable growth and metastasis would occur, making PDAC more difficult to control. Hence, we design and construct an aptamer-decorated hypoxia-responsive nanoparticle s(DGL)n@Apt co-loading gemcitabine monophosphate and STAT3 inhibitor HJC0152. This nanoparticle can reverse its surficial charge in the TME, and reduce the size triggered by hypoxia. The released ultra-small DGL particles loading gemcitabine monophosphate exhibit excellent deep-tumor penetration, chemotherapy drugs endocytosis promotion, and autophagy induction ability. Meanwhile, HJC0152 inhibits overactivated STAT3 in both tumor cells and tumor stroma, softens the stroma barrier, and reeducates the TME into an immune-activated state. This smart codelivery strategy provides an inspiring opportunity in PDAC treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA