Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Sci Technol ; 70(2): 345-51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25051483

RESUMEN

Acrylonitrile (AN) wastewater is a heavily polluted and a likely hazardous liquid that is generated during the production of AN. Several chemical methods for the pretreatment of AN wastewater are available in laboratory scale. However, the harsh reaction conditions and high operational cost make these methods undesirable. Until now, four-effect evaporation is the only pretreatment method used for AN wastewater in industry despite its huge energy consumption and high cost. It is difficult to find an energy-saving pretreatment technique from the perspective of industrial application. In this study, a safe and low-cost coagulation technique was developed for the pretreatment of AN wastewater. Three types of inorganic coagulant and three types of polymer coagulant were investigated for the coagulation treatment of highly concentrated AN wastewater from petrochemical plants. The effects of coagulant type, dosage, and coagulation conditions on the pretreatment efficiency of AN wastewater were investigated. The results show that a combination of inorganic and polymer coagulants is effective for the pretreatment of AN wastewater.


Asunto(s)
Acrilonitrilo/química , Residuos Industriales , Petróleo/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Floculación , Concentración de Iones de Hidrógeno , Polímeros/química , Contaminantes Químicos del Agua/química
2.
Brain Circ ; 9(4): 222-227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38284116

RESUMEN

Lipid-lowering agents are relevant in stroke prevention. Probucol (PU) is an antioxidative and lipid-lowering drug that has been used to treat atherosclerotic cardiovascular diseases and xanthomas. The drug penetrates the core of low-density lipoprotein cholesterol (LDL-C) particles, enhancing the activity of plasma cholesterol l ester transfer protein (CETP) and strengthening the liver scavenger receptor type I, resulting in reducing LDL-C; by increasing the activity of paraoxonase 1, upregulating the antioxidant function of high-density lipoprotein (HDL), and it decreases the serum HDL-cholesterol (HDL-C) level. This drug has been retired from the Western markets for lowering HDL-C levels and Q-interval prolongation. The latter side effect has been rarely reported and may be transient. Recent clinical evidence supports the effectiveness of PU in preventing cardiovascular events and in reducing mortality, irrespective of the reduction of HDL-C. Based on basic research and clinical studies, it appears that PU might be a valuable alternative when statins are ineffective or contraindicated, in patients at high risk of recurrence of cerebral ischemia and hemorrhage.

3.
Exp Ther Med ; 26(6): 583, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023353

RESUMEN

Metabolic abnormalities, particularly the M1/M2 macrophage imbalance, play a critical role in the development of various diseases, leading to severe inflammatory responses. The present study aimed to investigate the role of uncoupling protein 2 (UCP2) in regulating macrophage polarization, glycolysis, metabolic reprogramming, reactive oxygen species (ROS) and inflammation. Primary human macrophages were first polarized into M1 and M2 subtypes, and these two subtypes were infected by lentivirus-mediated UCP2 overexpression or knockdown, followed by enzyme-linked immunosorbent assay, reverse transcription-quantitative PCR, western blotting and flow cytometry to analyze the effects of UCP2 on glycolysis, oxidative phosphorylation (OXPHOS), ROS production and cytokine secretion, respectively. The results demonstrated that UCP2 expression was suppressed in M1 macrophages and increased in M2 macrophages, suggesting its regulatory role in macrophage polarization. UCP2 overexpression decreased macrophage glycolysis, increased OXPHOS, decreased ROS production, and led to the conversion of M1 polarization to M2 polarization. This process involved NF-κB signaling to regulate the secretion profile of cytokines and chemokines and affected the expression of key enzymes of glycolysis and a key factor for maintaining mitochondrial homeostasis (nuclear respiratory factor 1). UCP2 knockdown in M2 macrophages exacerbated inflammation and oxidative stress by promoting glycolysis, which was attenuated by the glycolysis inhibitor 2-deoxyglucose. These findings highlight the critical role of UCP2 in regulating macrophage polarization, metabolism, inflammation and oxidative stress through its effects on glycolysis, providing valuable insights into potential therapeutic strategies for macrophage-driven inflammatory and metabolic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA