Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(6): 2886-2893, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988135

RESUMEN

Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods.


Asunto(s)
ADN/genética , ARN/genética , Análisis de Secuencia de ARN/métodos , Quimera/genética , ADN Complementario/genética , Biblioteca de Genes , Células HEK293 , Células HeLa , Humanos , Análisis de la Célula Individual , Transposasas/metabolismo
2.
Photochem Photobiol Sci ; 11(3): 460-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22252510

RESUMEN

Photoactivatable fluorophores (PAFs) are powerful imaging probes for tracking molecular and cellular dynamics with high spatiotemporal resolution in biological systems. Recent developments in biological microscopy have raised new demands for engineering new PAFs with improved properties, such as high two photon excitation efficiency, reversibility, cellular delivery and targeting. Here we review the history and some of the recent developments in this area, emphasizing our efforts in developing a new class of caged coumarins and related imaging methods for studying dynamic cell-cell communication through gap junction channels, and in extending the application of these caged coumarins to new areas including spatiotemporal control of microRNA activity in vivo.


Asunto(s)
Colorantes Fluorescentes/química , Mediciones Luminiscentes/métodos , Técnicas de Sonda Molecular , Animales , Comunicación Celular , Humanos , Procesos Fotoquímicos
3.
J Am Chem Soc ; 131(37): 13255-69, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19708646

RESUMEN

Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies.


Asunto(s)
Diseño de Fármacos , Oligonucleótidos/química , Oligonucleótidos/síntesis química , Animales , Secuencia de Bases , Reactivos de Enlaces Cruzados/química , Silenciador del Gen , Hidroxiquinolinas/química , Secuencias Invertidas Repetidas , Nitrobencenos/química , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Fotones , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
4.
Materials (Basel) ; 12(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627292

RESUMEN

Firing-through paste used for rear-side metallization of p-type monocrystalline silicon passivated emitter and rear contact (PERC) solar cells was developed. The rear-side passivation Al2O3 layer and the SiNx layer can be effectively etched by the firing-through paste. Ohmic contact with a contact resistivity between 1 to 10 mΩ·cm2 was successfully fabricated. Aggressive reactive firing-through paste would introduce non-uniform etching and high-density recombination centers at the Si/paste interface. Good balance between low resistive contact formation and relatively high open-circuit voltage can be achieved by adjusting glass frit and metal powder content in the paste. Patterned dot back contacts formed by firing-through paste can further decrease recombination density at the Si/paste interface. A P-type solar cell with an area of 7.8 × 7.8 cm2 with a Voc of 653.4 mV and an efficiency of 19.61% was fabricated.

5.
ACS Chem Biol ; 6(12): 1332-8, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21977972

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that play numerous important roles in physiology and human diseases. During animal development, many miRNAs are expressed continuously from early embryos throughout adults, yet it is unclear whether these miRNAs are actually required at all the stages of development. Current techniques of manipulating microRNA function lack the required spatial and temporal resolution to adequately address the functionality of a given microRNA at a specific time or at single-cell resolution. To examine stage- or cell-specific function of miRNA during development and to achieve precise control of miRNA activity, we have developed photoactivatable antisense oligonucleotides against miRNAs. These caged oligonucleotides can be activated with 365 nm light with extraordinarily high efficiency to release potent antisense reagents to inhibit miRNAs. Initial application of these caged antimirs in a model organism (C. elegans) revealed that the activity of a miRNA (lsy-6) is required specifically around the comma stage during embryonic development to control a left/right asymmetric differentiation program in the C. elegans nervous system. This suggests that a transient input of lsy-6 during development is sufficient to specify the neuronal cell fate.


Asunto(s)
Caenorhabditis elegans/embriología , MicroARNs/fisiología , Oligonucleótidos Antisentido/efectos de la radiación , Animales , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , MicroARNs/antagonistas & inhibidores , Sistema Nervioso/embriología , Oligonucleótidos Antisentido/síntesis química , Procesos Fotoquímicos , Rayos Ultravioleta
6.
Silence ; 1(1): 9, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20359322

RESUMEN

BACKGROUND: Antisense reagents can serve as efficient and versatile tools for studying gene function by inhibiting nucleic acids in vivo. Antisense reagents have particular utility for the experimental manipulation of the activity of microRNAs (miRNAs), which are involved in the regulation of diverse developmental and physiological pathways in animals. Even in traditional genetic systems, such as the nematode Caenorhabditis elegans, antisense reagents can provide experimental strategies complementary to mutational approaches. Presently no antisense reagents are available for inhibiting miRNAs in the nematode C. elegans. RESULTS: We have developed a new class of fluorescently labelled antisense reagents to inhibit miRNAs in developing worms. These reagents were synthesized by conjugating dextran with 2'-O-methyl oligoribonucleotide. The dextran-conjugated antisense reagents can be conveniently introduced into the germline of adult hermaphrodites and are transmitted to their progeny, where they efficiently and specifically inhibit a targeted miRNA in different tissues, including the hypodermis, the vulva and the nervous system. We show that these reagents can be used combinatorially to inhibit more than one miRNA in the same animal. CONCLUSION: This class of antisense reagents represents a new addition to the toolkit for studying miRNA in C. elegans. Combined with numerous mutants or reporter stains available, these reagents should provide a convenient approach to examine genetic interactions that involve miRNA, and may facilitate studying functions of miRNAs, especially ones whose deletion strains are difficult to generate.See related research article: http://jbiol.com/content/9/3/20.

7.
Nat Methods ; 5(9): 835-41, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19160519

RESUMEN

To study the physiological regulation and function of cell-cell gap junction communication in vivo, we developed a bioconjugate of caged dye, named dextran-CANPE-HCC, for imaging cell coupling in small model organisms. In vitro, the compound was photolyzed efficiently with robust fluorescence enhancement. Dextran-CANPE-HCC delivered into Caenorhabditis elegans oocytes was retained in cells throughout development. Using local uncaging, we photolyzed dextran-CANPE-HCC to release the small HCC dye and imaged the dynamics of intercellular dye transfer through gap junction channels, a technique we named Trojan-local activation of molecular fluorescent probes (LAMP). Early during embryonic development, the pattern of cell coupling undergoes dramatic remodeling and imaging revealed that the germ cell precursors, P2, P3 and P4, were isolated from the somatic cell communication compartment. As dextran-CANPE-HCC is chemically and metabolically stable, Labeled worms showed very bright signal upon photoactivation after hatching, which allowed us to examine cell coupling in living worms noninvasively.


Asunto(s)
Colorantes Fluorescentes , Uniones Comunicantes/fisiología , Microscopía Fluorescente/métodos , Animales , Blastómeros/metabolismo , Caenorhabditis elegans , Comunicación Celular , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA