RESUMEN
Afterglow imaging through the collection of persistent luminescence after the stopping of light excitation holds enormous promise for advanced biomedical uses. However, efficient near-infrared (NIR)-emitting afterglow luminescent materials and probes (particularly the organic and polymeric ones) are still very limited, and their in-depth biomedical applications such as precise image-guided cancer surgery are rarely reported. Here, we design and synthesize a NIR afterglow luminescent nanoparticle with aggregation-induced emission (AIE) characteristics (named AGL AIE dots). It is demonstrated that the AGL AIE dots emit rather-high NIR afterglow luminescence persisting over 10 days after the stopping of a single excitation through a series of processes occurring in the AIE dots, including singlet oxygen production by AIE luminogens (AIEgens), Schaap's dioxetane formation, chemiexcitation by dioxetane decomposition, and energy transfer to NIR-emitting AIEgens. The animal studies reveal that the AGL AIE dots have the innate property of fast afterglow signal quenching in normal tissues, including the liver, spleen, and kidney. After the intravenous injection of AGL AIE dots into peritoneal carcinomatosis bearing mice, the tumor-to-liver ratio of afterglow imaging is nearly 100-fold larger than that for fluorescence imaging. The ultrahigh tumor-to-liver signal ratio, together with low afterglow background noise, enables AGL AIE dots to give excellent performance in precise image-guided cancer surgery.
Asunto(s)
Neoplasias Hepáticas/cirugía , Hígado/cirugía , Nanopartículas/química , Cirugía Asistida por Computador/métodos , Animales , Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Humanos , Hígado/patología , Neoplasias Hepáticas/patología , Ratones , Nanopartículas/administración & dosificación , Imagen Óptica , Polímeros/químicaRESUMEN
A BINOL-based chiral phosphoric acid was employed as an efficient catalyst in enantioselective cycloaddition of ortho-hydroxyphenyl-substituted para-quinone methides and enamides, which gave rise to acetamido-substituted tetrahydroxanthenes with three adjacent stereogenic centers in high yields (up to 99%) and excellent stereoselectivities (up to >99:1 diastereomeric ratio and up to 98% ee).
RESUMEN
A highly efficient method to access axially chiral anilides through asymmetric allylic alkylation reaction with achiral Morita-Baylis-Hillman carbonates by using a biscinchona alkaloid catalyst was reported. Through the atroposelective approach, a broad range of axially chiral anilide products with different acyl groups, such as substituted phenyl, naphthyl, alkyl, enyl, styryl, and benzyl, were generated with very good yields, moderate to excellent cis: trans ratios, and good to excellent enantioselectivities. The reaction can be scaled up, and the synthetic utility of axially chiral anilides was proved by transformations. Moreover, the linear free energy relationship analysis was introduced to investigate the reaction.