Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(17): 19524-19533, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35465674

RESUMEN

The development of the electrocatalyst-integrated electrodes with HER/OER bifunctional activity is desirable to reduce the cost and simplify the system of the practical water electrolyzers. Herein, we construct a new type of Ni3Fe1-xCrx (0 ≤ x < 0.3) intermetallic integrated electrodes for overall water splitting via an ultrafast carbothermal shock method. The obtained Ni3Fe0.9Cr0.1/CACC electrode exhibits the optimum performance among all developed electrocatalyst electrodes in this work, and the overpotential is merely 239 mV for OER and 128 mV for HER at 10 mA cm-2. In addition, the Ni3Fe0.9Cr0.1/CACC electrode shows excellent durability during both OER and HER stability tests at a high current density of 100 mA cm-2. An electrolyzer, which was assembled with Ni3Fe0.9Cr0.1/CACC electrodes as both the anode and cathode, operates with a low cell voltage of 1.59 V at 10 mA cm-2. It has been found that the impressive OER activity of Ni3Fe0.9Cr0.1 nanoparticles (NPs) can be ascribed to the stimulative formation of the OER-active Ni3+/Fe3+ species by the substituted Cr, while the enhanced HER activity is caused by the Cr substitution, which decreases the water dissociation energy barrier. This work provides an ultrafast and facile strategy to develop electrocatalyst-integrated electrodes with low cost and impressive HER/OER bifunctional performance for overall water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA