Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(3): 2638-2645, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174415

RESUMEN

Topological insulators are emerging materials with insulating bulk and symmetry protected nontrivial surface states. One of the most fascinating transport behaviors in a topological insulator is the quantum anomalous Hall effect, which has been observed in magnetic-topological-insulator-based devices. In this work, we report successful doping of rare-earth element Nd into Bi1.1Sb0.9STe2 bulk-insulating topological insulator single crystals, in which the Nd moments are ferromagnetically ordered at ∼100 K. Benefiting from the in-bulk-gap Fermi level, electronic transport behaviors dominated by the topological surface states are observed in the ferromagnetic region. At low temperatures, strong Shubnikov-de Haas oscillations with a nontrivial Berry phase are observed. The topological insulator with long range magnetic ordering in Nd-doped Bi1.1Sb0.9STe2 single crystals provides a good platform for quantum transport studies and spintronic applications.

2.
Dig Dis Sci ; 69(4): 1263-1273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451429

RESUMEN

BACKGROUND: A grim prognosis of pancreatic cancer (PCa) was attributed to the difficulty in early diagnosis of the disease. AIMS: Identifying novel biomarkers for early detection of PCa is thus urgent to improve the overall survival rates of patients. METHODS: The study was performed firstly by identification of candidate microRNAs (miRNAs) in formalin-fixed, paraffin-embedded tissues using microarray profiles, and followed by validation in a serum-based cohort study to assess clinical utility of the candidates. In the cohorts, a total of 1273 participants from four centers were retrospectively recruited as two cohorts including training and validation cohort. The collected serum specimens were analyzed by real-time polymerase chain reaction. RESULTS: We identified 27 miRNAs expressed differentially in PCa tissues as compared to the benign. Of which, the top-four was selected as a panel whose diagnostic efficacy was fully assessed in the serum specimens. The panel exhibited superior to CA19-9, CA125, CEA and CA242 in discriminating patients with early stage PCa from healthy controls or non-PCa including chronic pancreatitis as well as pancreatic cystic neoplasms, with the area under the curves (AUC) of 0.971 (95% CI 0.956-0.987) and 0.924 (95% CI 0.899-0.949), respectively. Moreover, the panel eliminated interference from other digestive tumors with a specificity of 90.2%. CONCLUSIONS: A panel of four serum miRNAs was developed showing remarkably discriminative ability of early stage PCa from either healthy controls or other pancreatic diseases, suggesting it may be developed as a novel, noninvasive approach for early screening of PCa in clinic.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/genética , Estudios Retrospectivos , Estudios de Cohortes , Biomarcadores de Tumor , Detección Precoz del Cáncer , Neoplasias Pancreáticas/patología
3.
Nanotechnology ; 35(1)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37788663

RESUMEN

The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial preparation. However, there is few studies on the preparation of perovskite solar cells by the electrodeposition method, especially on the perovskite FAPbI3-based solar cells. Herein, we fabricated the mixed perovskite FA1-yCsyPbBrxI3-xsolar cells by an optimized electrodeposition method, in which the electrodeposited PbO2reacts directly with FAI and an appropriate amount of CsBr dopants. The corresponding solar cells display the best PCE of 4.97%. By regulating the growth temperature in the reaction between PbO2and FAI/CsBr, the efficiency of the mixed perovskite solar cells can be promoted to 10.18%. These results illustrate that the element doping and growth environment regulation can optimize the quality of the perovskite films, thus promoting the efficiency of the perovskite solar cells. With further optimizing the growth process in the electrodeposition method, it is expected to open up a new commercial preparation route for the perovskite solar cells in the near future.

4.
Phys Chem Chem Phys ; 25(10): 7550, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36848140

RESUMEN

Correction for 'Magnetotransport and magnetic properties of Cr-modified Mn2Sb epitaxial thin films' by Ting-Wei Chen et al., Phys. Chem. Chem. Phys., 2023, 25, 5785-5794, https://doi.org/10.1039/D2CP05442F.

5.
Phys Chem Chem Phys ; 25(7): 5785-5794, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744652

RESUMEN

High-quality Mn2-xCrxSb (x = 0.01, 0.04, and 0.1) epitaxial thin films were grown on SrTiO3 (STO) (001) single-crystal substrates using molecular beam epitaxy. Magnetotransport and magnetic measurements reveal that the x = 0.01 sample undergoes a quasi-ferrimagnetic (I) [Q-FIM(I)]-to-ferrimagnetic (II) [FIM(II)] spin reorientation (SR) transition and a giant magnetoresistance (MR) associated first-order ferrimagnetic(II)-to-antiferromagnetic (AFM) phase transition upon cooling, resulting in the AFM ground state with a weak in-plane net moment. Upon increasing the doping level from x = 0.01 to 0.1, both the SR transition and the first-order magnetic transition are suppressed. For x = 0.1, the former transition is suppressed, leaving only the Q-FIM(I)-to-AFM transition within the whole temperature region. TAFM-FIM shows almost similar changes upon the application of either in-plane or out-of-plane magnetic fields. TAFM-FIM values of the x = 0.01 and 0.04 samples are much higher than those of the Mn2-xCrxSb bulk with similar doping levels, which can be understood by the clamping effect from STO substrates. For each thin-film sample, the MR effect is observed near TAFM-FIM and disappears in the high temperature Q-FIM(I) phase and low temperature AFM phase, indicating that MR is related to the spin-dependent electron scattering during the first-order magnetic phase transition. Based on the magnetotransport and magnetic data, a magnetic phase diagram is established for the Mn2-xCrxSb films in the low doping level region.

6.
J Chem Phys ; 158(7): 074701, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36813719

RESUMEN

The centrosymmetric benzene molecule has zero first-order electric dipole hyperpolarizability, which results in no sum-frequency vibrational spectroscopy (SFVS) signal at interfaces, but it shows very strong SFVS experimentally. We perform a theoretical study on its SFVS, which is in good agreement with the experimental results. Its strong SFVS mainly comes from the interfacial electric quadrupole hyperpolarizability rather than the symmetry-breaking electric dipole, bulk electric quadrupole, and interfacial and bulk magnetic dipole hyperpolarizabilities, which provides a novel and completely unconventional point of view.

7.
J Cell Mol Med ; 26(9): 2594-2606, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366055

RESUMEN

This study was performed to uncover the effects of dexmedetomidine on oxidative stress injury induced by mitochondrial localization of telomerase reverse transcriptase (TERT) in enteric glial cells (EGCs) following intestinal ischaemia-reperfusion injury (IRI) in rat models. Following establishment of intestinal IRI models by superior mesenteric artery occlusion in Wistar rats, the expression and distribution patterns of TERT were detected. The IRI rats were subsequently treated with low or high doses of dexmedetomidine, followed by detection of ROS, MDA and GSH levels. Calcein cobalt and rhodamine 123 staining were also carried out to detect mitochondrial permeability transition pore (MPTP) and the mitochondrial membrane potential (MMP), respectively. Moreover, oxidative injury of mtDNA was determined, in addition to analyses of EGC viability and apoptosis. Intestinal tissues and mitochondria of EGCs were badly damaged in the intestinal IRI group. In addition, there was a reduction in mitochondrial localization of TERT, oxidative stress, whilst apoptosis of EGCs was increased and proliferation was decreased. On the other hand, administration of dexmedetomidine was associated with promotion of mitochondrial localization of TERT, whilst oxidative stress, MPTP and mtDNA in EGCs, and EGC apoptosis were all inhibited, and the MMP and EGC viability were both increased. A positive correlation was observed between different doses of dexmedetomidine and protective effects. Collectively, our findings highlighted the antioxidative effects of dexmedetomidine on EGCs following intestinal IRI, as dexmedetomidine alleviated mitochondrial damage by enhancing the mitochondrial localization of TERT.


Asunto(s)
Dexmedetomidina , Daño por Reperfusión , Telomerasa , Animales , Ratas , Dexmedetomidina/farmacología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neuroglía/metabolismo , Ratas Wistar , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Telomerasa/metabolismo
8.
J Transl Med ; 20(1): 471, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243806

RESUMEN

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) have become a promising biomarker for assessing tumor immune microenvironment and predicting immunotherapy response. However, the assessment of TILs relies on invasive pathological slides. METHODS: We retrospectively extracted radiomics features from magnetic resonance imaging (MRI) to develop a radiomic cohort of triple-negative breast cancer (TNBC) (n = 139), among which 116 patients underwent transcriptomic sequencing. This radiomic cohort was randomly divided into the training cohort (n = 98) and validation cohort (n = 41) to develop radiomic signatures to predict the level of TILs through a non-invasive method. Pathologically evaluated TILs in the H&E sections were set as the gold standard. Elastic net and logistic regression were utilized to perform radiomics feature selection and model training, respectively. Transcriptomics was utilized to infer the detailed composition of the tumor microenvironment and to validate the radiomic signatures. RESULTS: We selected three radiomics features to develop a TILs-predicting radiomics model, which performed well in the validation cohort (AUC 0.790, 95% confidence interval (CI) 0.638-0.943). Further investigation with transcriptomics verified that tumors with high TILs predicted by radiomics (Rad-TILs) presented activated immune-related pathways, such as antigen processing and presentation, and immune checkpoints pathways. In addition, a hot immune microenvironment, including upregulated T cell infiltration gene signatures, cytokines, costimulators and major histocompatibility complexes (MHCs), as well as more CD8+ T cells, follicular helper T cells and memory B cells, was found in high Rad-TILs tumors. CONCLUSIONS: Our study demonstrated the feasibility of radiomics model in predicting TILs status and provided a method to make the features interpretable, which will pave the way toward precision medicine for TNBC.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Neoplasias de la Mama Triple Negativas , Linfocitos T CD8-positivos , Citocinas/metabolismo , Humanos , Estudios Retrospectivos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral
9.
Appl Environ Microbiol ; 88(5): e0239721, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35020449

RESUMEN

Nitrilase-catalyzed hydrolysis of 2-chloronicotinonitrile (2-CN) is a promising approach for the efficient synthesis of 2-chloronicotinic acid (2-CA). The development of nitrilase with ideal catalytic properties is crucial for the biosynthetic route with industrial potential. Herein, a nitrilase from Rhodococcus zopfii (RzNIT), which showed much higher hydration activity than hydrolysis activity, was designed for efficient hydrolysis of 2-CN. Two residues (N165 and W167) significantly affecting the reaction specificity were precisely identified. By tuning these two residues, a single mutation of W167G with abolished hydration activity and 20-fold improved hydrolysis activity was obtained. Molecular dynamics simulation and molecular docking revealed that the mutation generated a larger binding pocket, causing the substrate 2-CN to bind more deeply in the pocket and form a delocalized π bond between the residues W190 and Y196, which reduced the negative influence of steric hindrance and electron effect caused by chlorine substituent. With mutant W167G as biocatalyst, 100 mM 2-CN was exclusively converted into 2-CA within 16 h. The study provides useful guidance in nitrilase engineering for simultaneous improvement of reaction specificity and catalytic activity, which are highly desirable in value-added carboxylic acids production from nitriles hydrolysis. IMPORTANCE 2-CA is an important building block for agrochemicals and pharmaceuticals with a rapid increase in demand in recent years. It is currently manufactured from 3-cyanopyridine by chemical methods. However, during the final step of 2-CN hydrolysis under high temperature and strong alkaline conditions, the byproduct 2-CM was generated except for the target product, leading to low yield and tedious separation steps. Nitrilase-mediated hydrolysis is regarded as a promising alternative for 2-CA production, which proceeded under mild conditions. Nevertheless, nitrilase capable of efficient hydrolysis of 2-CN has not been reported because the enzymes showed either extremely low activity or surprisingly high hydration activity toward 2-CN. Herein, the reaction specificity of RzNIT was precisely tuned through a single site mutation. The mutant exhibited remarkably enhanced hydrolysis activity without the formation of byproducts, providing a robust biocatalyst for 2-CA biosynthesis with industrial potential.


Asunto(s)
Aminohidrolasas , Nitrilos , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Hidrólisis , Simulación del Acoplamiento Molecular , Mutación , Especificidad por Sustrato
10.
Ann Surg Oncol ; 29(11): 7165-7175, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35711018

RESUMEN

BACKGROUND: Homologous recombination (HR) is a key pathway in DNA double-strand damage repair. HR deficiency (HRD) occurs more commonly in triple-negative breast cancers (TNBCs) than in other breast cancer subtypes. Several clinical trials have demonstrated the value of HRD in stratifying breast cancer patients into distinct groups based on their responses to poly(ADP ribose) polymerase inhibitors and chemotherapy. METHODS: We retrospectively collected TNBC samples to establish a multiomics cohort (n = 343) and explored the biological and phenotypic mechanisms underlying the better prognosis of patients with high HRD scores. Gene set enrichment analysis was conducted to elucidate the underlying pathways in patients with low HRD scores, and a radiomics model was established to predict the HRD score via a noninvasive method. RESULTS: Multivariable Cox analysis revealed the independent prognostic value of a low HRD score (hazard ratio 2.20, 95% confidence interval 1.05-4.59; p = 0.04). Furthermore, amino acid and lipid metabolism pathways were highly enriched in tumors from patients with low HRD scores, which was also demonstrated by differential abundant metabolite analysis. A noninvasive radiomics method was developed to predict the HRD status and it performed well in the independent validation cohort (support vector machine model: area under the curve [AUC] 0.739, sensitivity 0.571, and specificity 0.824; logistic regression model: AUC 0.695, sensitivity 0.571, and specificity 0.882). CONCLUSIONS: We revealed the prognostic value of the HRD score, predicted the HRD status with noninvasive radiomics features, and preliminarily explored druggable targets for TNBC patients with low HRD scores.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Aminoácidos/genética , Aminoácidos/uso terapéutico , Proteína BRCA1/genética , ADN , Recombinación Homóloga , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Estudios Retrospectivos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
11.
BMC Cancer ; 22(1): 934, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038837

RESUMEN

OBJECTIVE: Osteosarcoma is the most common primary bone cancer that affects mostly children and young adults. Despite the advances in osteosarcoma treatment, the long-term survival rate of metastatic patients has not significantly improved in the past few decades, thus demonstrating the need for novel therapeutic targets or methods to improve metastatic osteosarcoma treatment. In this study we aimed to elucidate the role of miR-659-3p and SRPK1 in osteosarcoma. METHODS: We evaluated miR-659-3p and SRPK1 function in osteosarcoma cell proliferation, migration, and cell cycle progression in vitro by using gain- and loss-of-function strategies. The effect of miR-659-3p in tumor progression and metastasis was determined by in vivo mouse model. RESULTS: We revealed that expression of miR-659-3p was significantly downregulated in osteosarcoma compared with normal bone cells and was inversely correlated with serine-arginine protein kinase 1 (SRPK1) expression. We proved that miR-659-3p targets 3' UTR of SRPK1 and negatively regulates SRPK1 expression in osteosarcoma cells via luciferase assay. In vitro studies revealed that gain of miR-659-3p function inhibited osteosarcoma cells growth, migration, and invasion by down-regulating SRPK1 expression. Inversely, inhibiting miR-659-3p in osteosarcoma cells promoted cell growth, migration, and invasion. Cell cycle profile analysis revealed that miR-659-3p inhibited osteosarcoma cells' G1/G0 phase exit by down-regulating SRPK1 expression. By using an in vivo mouse model, we demonstrated that miR-659-3p inhibits osteosarcoma tumor progression and lung metastasis by inhibiting SRPK1 expression and potentially downstream cell proliferation, and epithelial-to-mesenchymal transition genes. CONCLUSIONS: This study demonstrated that miR-659-3p is a potential therapeutic method and SRPK1 is a potential therapeutic target for osteosarcoma treatment.


Asunto(s)
Arginina Quinasa , Neoplasias Óseas , MicroARNs , Osteosarcoma , Regiones no Traducidas 3' , Animales , Arginina/genética , Arginina Quinasa/genética , Arginina Quinasa/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Ratones , MicroARNs/genética , Procesos Neoplásicos , Osteosarcoma/patología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Serina/metabolismo
12.
Anal Biochem ; 640: 114547, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35026146

RESUMEN

Tyrosine phenol-lyase (TPL) exhibits great potential in industrial biosynthesis of l-tyrosine and its derivates. To uncover and screen TPLs with excellent catalytic properties, there is unmet demand for development of facile and reliable screening system for TPL. Here we presented a novel assay format for the detection of TPL activity based on catechol 2,3-dioxygenase (C23O)-catalyzed reaction. Catechol released from TPL-catalyzed cleavage of 3,4-dihydroxy-l-phenylalanine (l-DOPA) was further oxidized by C23O to form 2-hydroxymuconate semialdehyde, which could be readily detected by spectrophotometric measurements at 375 nm. The assay achieved a unique balance between the ease of operation and superiority of analytical performances including linearity, sensitivity and accuracy. In addition, this assay enabled real-time monitoring of TPL activity with high efficiency and reliability. As C23O is highly specific towards catechol, a non-natural product of microorganism, the assay was therefore accessible to both crude cell extracts and the whole-cell system without elaborate purification steps of enzymes, which could greatly expedite discovery and engineering of TPLs. This study provided fundamental principle for high-throughput screening of other enzymes consuming or producing catechol derivatives.


Asunto(s)
Tirosina Fenol-Liasa
13.
Biotechnol Bioeng ; 119(12): 3421-3431, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36042572

RESUMEN

Nitrilases are promising biocatalysts to produce high-value-added carboxylic acids through hydrolysis of nitriles. However, since the enzymes always show low activity and sometimes with poor reaction specificity toward 2-chloronicotinonitrile (2-CN), very few robust nitrilases have been reported for efficient production of 2-chloronicotinic acid (2-CA) from 2-CN. Herein, a nitrilase from Paraburkholderia graminis (PgNIT) was engineered to improve its catalytic properties. We identified the beneficial residues via computational analysis and constructed the mutant library. The positive mutants were obtained and the activity of the "best" mutant F164G/I130L/N167Y/A55S/Q260C/T133I/R199Q toward 2-CN was increased from 0.14 × 10-3  to 4.22 U/mg. Its reaction specificity was improved with elimination of hydration activity. Molecular docking and molecular dynamics simulation revealed that the conformational flexibility, the nucleophilic attack distance, as well as the interaction forces between the enzyme and substrate were the main reason alternating the catalytic properties of PgNIT. With the best mutant as biocatalyst, 150 g/L 2-CN was completely converted, resulting in 2-CA accumulated to 169.7 g/L. When the substrate concentration was increased to 200 g/L, 203.1 g/L 2-CA was obtained with yield of 85.7%. The results laid the foundation for industrial production of 2-CA with the nitrilase-catalyzed route.


Asunto(s)
Aminohidrolasas , Burkholderiaceae , Ácidos Nicotínicos , Aminohidrolasas/química , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Burkholderiaceae/genética , Burkholderiaceae/metabolismo , Simulación del Acoplamiento Molecular , Especificidad por Sustrato , Ácidos Nicotínicos/biosíntesis , Ácidos Nicotínicos/metabolismo , Catálisis
14.
Biotechnol Bioeng ; 119(12): 3462-3473, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36131376

RESUMEN

Phosphatases are a class of enzymes catalyzing the cleavage of monophosphate ester bonds from the phosphorylated substrates. They have important applications in construction of in vitro multi-enzymatic system for monosaccharides. However, the enzymes generally show substrate ambiguity, which has become a bottleneck for efficient biosynthesis of target products with high purity. In this study, semirational design was performed on phosphatase from Thermosipho atlanticus (Ta-PST). The hotspot amino acid residues forming a "cap domain" were identified and selected for saturation mutagenesis. The mutant F179T and F179M showed improved substrate preference toward fructose-6-phosphate and mannose-6-phosphate, respectively. Coupling with other enzymes involved in the multi-enzymatic system under optimized conditions, the application of F179T led to fructose yield of 80% from 10 g/L maltodextrin and the ratio between the target product and by-product glucose was increased from 2:1 to 19:1. On the other hand, the application of F179M led to mannose yield of 59% with ratio of mannose to the by-products glucose and fructose increased from 1:1:1 to 14:2:1. Moreover, the molecular understanding of the beneficial substitution was gained by structural analysis and molecular dynamic simulations, giving important guidance to regulate the enzyme's substrate preference.


Asunto(s)
Monosacáridos , Monoéster Fosfórico Hidrolasas , Especificidad por Sustrato , Manosa , Fructosa , Glucosa
15.
Biotechnol Bioeng ; 119(9): 2399-2412, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35750945

RESUMEN

Simultaneous evolution of multiple enzyme properties remains challenging in protein engineering. A chimeric nitrilase (BaNITM0 ) with high activity towards isobutylsuccinonitrile (IBSN) was previously constructed for biosynthesis of pregabalin precursor (S)-3-cyano-5-methylhexanoic acid ((S)-CMHA). However, BaNITM0 also catalyzed the hydration of IBSN to produce by-product (S)-3-cyano-5-methylhexanoic amide. To obtain industrial nitrilase with vintage performance, we carried out engineering of BaNITM0 for simultaneous evolution of reaction specificity, enantioselectivity, and catalytic activity. The best variant V82L/M127I/C237S (BaNITM2 ) displayed higher enantioselectivity (E = 515), increased enzyme activity (5.4-fold) and reduced amide formation (from 15.8% to 1.9%) compared with BaNITM0 . Structure analysis and molecular dynamics simulations indicated that mutation M127I and C237S restricted the movement of E66 in the catalytic triad, resulting in decreased amide formation. Mutation V82L was incorporated to induce the reconstruction of the substrate binding region in the enzyme catalytic pocket, engendering the improvement of stereoselectivity. Enantio- and regio-selective hydrolysis of 150 g/L IBSN using 1.5 g/L Escherichia coli cells harboring BaNITM2 as biocatalyst afforded (S)-CMHA with >99.0% ee and 45.9% conversion, which highlighted the robustness of BaNITM2 for efficient manufacturing of pregabalin.


Asunto(s)
Aminohidrolasas , Escherichia coli , Amidas , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Pregabalina/química , Especificidad por Sustrato
16.
Phys Chem Chem Phys ; 24(44): 27204-27211, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36321550

RESUMEN

Sum-frequency nonlinear spectroscopy is a powerful tool in investigating physical and chemical properties at gas/liquid, gas/solid, liquid/liquid and liquid/solid interfaces. Fermi resonance is a well-documented anharmonic phenomenon related to molecular vibrational coupling and the energy transfer phenomenon that exists within and between molecules. Such a phenomenon is widely used in the fields of materials, biology and chemistry. Combining density functional theory and molecular dynamics simulation, we present a method of studying sum-frequency vibrational spectroscopy for the CH3 group of methanol at interfaces due to Fermi resonance. The calculated spectroscopic data agree with the experiment and provide a novel and untraditional point of view with respect to traditional approaches.

17.
Nano Lett ; 21(23): 10139-10145, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34543026

RESUMEN

Linear magnetoresistance (LMR) is usually observed in topological quantum materials and plausibly connected with the topologically nontrivial surface state with Dirac-cone-like linear dispersion because the frequently encountered large Hall resistivity can be trivially mixed into the LMR via charge inhomogeneity. Herein, by applying an optimal gate voltage to nodal-line semimetal ZrGeSe two-dimensional (2D) layers with specific thicknesses, we observe a giant nonsaturated LMR of 8 × 104% at 2 K and a magnetic field of 9 T. This giant LMR is accompanied by a very small Hall resistivity, which is inconsistent with the charge inhomogeneity mechanism. Our systematic results confirm that the giant LMR is maximized when the topological semimetal is in the "even-metal" regime and suppressed upon evolution to the normal "odd-metal" regime. The "even-to-odd" transition is universal regardless of the thicknesses of the crystals. A comparison with Abrikosov's quantum LMR theory indicates that the observed LMR cannot be trivial.

18.
Kardiologiia ; 62(6): 74-76, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35834346

RESUMEN

We retrospectively studied the diagnosis and treatment of a case of AAD misdiagnosed as stroke since atypical symptoms as the first manifestation, and discussed the clinical features and manifestations, diagnosis, and differential diagnosis of the case in the context of relevant domestic and international literature. The patient, a 49­year-old male with herpes zoster for more than 1 month, presented with sudden onset of right-sided chest and back pain, accompanied by numbness and weakness of the left limb, and was tentatively diagnosed with post-herpetic neuralgia combined with stroke due to the history of herpes zoster. Non-specific ST-T alterations, D-dimer 20ug / ml, and non-traumatic angiographic findings in the transthoracic and abdominal aorta demonstrated slight thickening of the patient's ascending aorta, and the lumen of the root sinus region showed intimal flap formation with a larger pseudocoel and smaller true lumen, which ultimately confirmed the diagnosis of acute aortic coarctation with atypical presentation. So clinicians need to improve their basic theoretical knowledge, strengthen the understanding of AAD, focus on physical examination, improve relevant auxiliary examinations expeditiously, and pay attention to the significance of specific auxiliary examinations in order to decrease misdiagnosis and missed diagnosis of atypical manifestations of AAD patients.


Asunto(s)
Disección Aórtica , Discinesias , Herpes Zóster , Accidente Cerebrovascular , Disección Aórtica/complicaciones , Disección Aórtica/diagnóstico , Disección Aórtica/cirugía , Dolor de Espalda/complicaciones , Discinesias/complicaciones , Herpes Zóster/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Accidente Cerebrovascular/complicaciones
19.
J Bacteriol ; 203(7)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33468590

RESUMEN

Members of Thermococcales harbor a number of genes encoding putative aminotransferase class III enzymes. Here, we characterized the TK1211 protein from the hyperthermophilic archaeon Thermococcus kodakarensis The TK1211 gene was expressed in T. kodakarensis under the control of the strong, constitutive promoter of the cell surface glycoprotein gene TK0895 (P csg ). The purified protein did not display aminotransferase activity but exhibited racemase activity. An examination of most amino acids indicated that the enzyme was a racemase with relatively high activity toward Leu and Met. Kinetic analysis indicated that Leu was the most preferred substrate. A TK1211 gene disruption strain (ΔTK1211) was constructed and grown on minimal medium supplemented with l- or d-Leu or l- or d-Met. The wild-type T. kodakarensis is not able to synthesize Leu and displays Leu auxotrophy, providing a direct means to examine the Leu racemase activity of the TK1211 protein in vivo When we replaced l-Leu with d-Leu in the medium, the host strain with an intact TK1211 gene displayed an extended lag phase but displayed cell yield similar to that observed in medium with l-Leu. In contrast, the ΔTK1211 strain displayed growth in medium with l-Leu but could not grow with d-Leu. The results indicate that TK1211 encodes a Leu racemase that is active in T. kodakarensis cells and that no other protein exhibits this activity, at least to an extent that can support growth. Growth experiments with l- or d-Met also confirmed the Met racemase activity of the TK1211 protein in T. kodakarensisIMPORTANCE Phylogenetic analysis of aminotransferase class III proteins from all domains of life reveals numerous groups of protein sequences. One of these groups includes a large number of sequences from Thermococcales species and can be divided into four subgroups. Representatives of three of these subgroups have been characterized in detail. This study reveals that a representative from the remaining uncharacterized subgroup is an amino acid racemase with preference toward Leu and Met. Taken together with results of previous studies on enzymes from Pyrococcus horikoshii and Thermococcus kodakarensis, members of the four subgroups now can be presumed to function as a broad-substrate-specificity amino acid racemase (subgroup 1), alanine/serine racemase (subgroup 2), ornithine ω-aminotransferase (subgroup 3), or Leu/Met racemase (subgroup 4).


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Proteínas Arqueales/metabolismo , Thermococcus/enzimología , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Calor , Cinética , Leucina/metabolismo , Metionina/metabolismo , Filogenia , Especificidad por Sustrato , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
20.
J Transl Med ; 19(1): 463, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772407

RESUMEN

BACKGROUND: Intestinal ischemia/reperfusion (I/R) injury commonly occurs during perioperative periods, resulting in high morbidity and mortality on a global scale. Dexmedetomidine (Dex) is a selective α2-agonist that is frequently applied during perioperative periods for its analgesia effect; however, its ability to provide protection against intestinal I/R injury and underlying molecular mechanisms remain unclear. METHODS: To fill this gap, the protection of Dex against I/R injury was examined in a rat model of intestinal I/R injury and in an inflammation cell model, which was induced by tumor necrosis factor-alpha (TNF-α) plus interferon-gamma (IFN-γ) stimulation. RESULTS: Our data demonstrated that Dex had protective effects against intestinal I/R injury in rats. Dex was also found to promote mitophagy and inhibit apoptosis of enteric glial cells (EGCs) in the inflammation cell model. PINK1 downregulated p53 expression by promoting the phosphorylation of HDAC3. Further studies revealed that Dex provided protection against experimentally induced intestinal I/R injury in rats, while enhancing mitophagy, and suppressing apoptosis of EGCs through SIRT3-mediated PINK1/HDAC3/p53 pathway in the inflammation cell model. CONCLUSION: Hence, these findings provide evidence supporting the protective effect of Dex against intestinal I/R injury and its underlying mechanism involving the SIRT3/PINK1/HDAC3/p53 axis.


Asunto(s)
Dexmedetomidina , Daño por Reperfusión , Sirtuina 3 , Animales , Apoptosis , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Isquemia , Mitocondrias , Neuroglía , Proteínas Quinasas , Ratas , Daño por Reperfusión/tratamiento farmacológico , Proteína p53 Supresora de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA