Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 616(7955): 56-60, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949191

RESUMEN

Quantum error correction (QEC) aims to protect logical qubits from noises by using the redundancy of a large Hilbert space, which allows errors to be detected and corrected in real time1. In most QEC codes2-8, a logical qubit is encoded in some discrete variables, for example photon numbers, so that the encoded quantum information can be unambiguously extracted after processing. Over the past decade, repetitive QEC has been demonstrated with various discrete-variable-encoded scenarios9-17. However, extending the lifetimes of thus-encoded logical qubits beyond the best available physical qubit still remains elusive, which represents a break-even point for judging the practical usefulness of QEC. Here we demonstrate a QEC procedure in a circuit quantum electrodynamics architecture18, where the logical qubit is binomially encoded in photon-number states of a microwave cavity8, dispersively coupled to an auxiliary superconducting qubit. By applying a pulse featuring a tailored frequency comb to the auxiliary qubit, we can repetitively extract the error syndrome with high fidelity and perform error correction with feedback control accordingly, thereby exceeding the break-even point by about 16% lifetime enhancement. Our work illustrates the potential of hardware-efficient discrete-variable encodings for fault-tolerant quantum computation19.

2.
Opt Express ; 31(25): 41669-41683, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087560

RESUMEN

We study the quantum metric in a driven Tavis-Cummings model, comprised of multiple qubits interacting with a quantized photonic field. The parametrical driving of the photonic field breaks the system's U(1) symmetry down to a Z2 symmetry, whose spontaneous breaking initiates a superradiant phase transition. We analytically solved the eigenenergies and eigenstates, and numerically simulated the system behaviors near the critical point. The critical behaviors near the superradiant phase transition are characterized by the quantum metric, defined in terms of the response of the quantum state to variation of the control parameter. In addition, a quantum metrological protocol based on the critical behaviors of the quantum metric near the superradiant phase transition is proposed, which enables greatly the achievable measurement precision.

3.
Phys Rev Lett ; 131(26): 260201, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38215365

RESUMEN

Non-Hermitian (NH) extension of quantum-mechanical Hamiltonians represents one of the most significant advancements in physics. During the past two decades, numerous captivating NH phenomena have been revealed and demonstrated, but all of which can appear in both quantum and classical systems. This leads to the fundamental question: what NH signature presents a radical departure from classical physics? The solution of this problem is indispensable for exploring genuine NH quantum mechanics, but remains experimentally untouched so far. Here, we resolve this basic issue by unveiling distinct exceptional entanglement phenomena, exemplified by an entanglement transition, occurring at the exceptional point of NH interacting quantum systems. We illustrate and demonstrate such purely quantum-mechanical NH effects with a naturally dissipative light-matter system, engineered in a circuit quantum electrodynamics architecture. Our results lay the foundation for studies of genuinely quantum-mechanical NH physics, signified by exceptional-point-enabled entanglement behaviors.

4.
Phys Rev Lett ; 131(11): 113601, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774281

RESUMEN

Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the quantum level, and play a central role in criticality-enhanced quantum sensing. So far, SPTs have been observed in driven-dissipative systems, but the emergent light fields did not show any nonclassical characteristic due to the presence of strong dissipation. Here we report an experimental demonstration of the SPT featuring the emergence of a highly nonclassical photonic field, realized with a resonator coupled to a superconducting qubit, implementing the quantum Rabi model. We fully characterize the light-matter state by Wigner matrix tomography. The measured matrix elements exhibit quantum interference intrinsic of a photonic mesoscopic superposition, and reveal light-matter entanglement.

5.
Opt Lett ; 47(5): 1182-1185, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230322

RESUMEN

Nonreciprocal transmission of optical or microwave signals is indispensable in various applications involving sensitive measurements. In this paper, we study optomechanically induced directional amplification and isolation in a generic setup including two cavities and two mechanical oscillators by exclusively using blue-sideband drive tones. The input and output ports defined by the two cavity modes are coupled through coherent and dissipative paths mediated by the two mechanical resonators, respectively. By choosing appropriate transfer phases and strengths of the driving fields, either a directional amplifier or an isolator can be implemented at low thermal temperature, and both of them show bi-directional nonreciprocity working at two mirrored frequencies. The nonreciprocal device can potentially be demonstrated by opto- and electromechanical setups in both optical and microwave domains.

6.
Opt Express ; 28(2): 1492-1506, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121858

RESUMEN

We report an efficient mechanism to generate mechanical entanglement in a two-cascaded cavity optomechanical system with optical parametric amplifiers (OPAs) inside the two coupled cavities. We use the especially tuned OPAs to squeeze the hybrid mode composed of two mechanical modes, leading to strong macroscopic entanglement between the two movable mirrors. The squeezing parameter as well as the effective mechanical damping are both modulated by the OPA gains. The optimal degree of mechanical entanglement therefore depends on the balanced process between coherent hybrid mode squeezing and dissipation engineering. The mechanical entanglement is robust to strong cavity decay, going beyond simply resolved sideband regime, and is resistant to reasonable high thermal noise. The scheme provides an alternative way for generating strong macroscopic entanglement in cascaded optomechanical systems.

7.
Phys Rev Lett ; 125(18): 180503, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33196232

RESUMEN

Quantum correlations in observables of multiple systems not only are of fundamental interest, but also play a key role in quantum information processing. As a signature of these correlations, the violation of Bell inequalities has not been demonstrated with multipartite hybrid entanglement involving both continuous and discrete variables. Here we create a five-partite entangled state with three superconducting transmon qubits and two photonic qubits, each encoded in the mesoscopic field of a microwave cavity. We reveal the quantum correlations among these distinct elements by joint Wigner tomography of the two cavity fields conditional on the detection of the qubits and by test of a five-partite Bell inequality. The measured Bell signal is 8.381±0.038, surpassing the bound of 8 for a four-partite entanglement imposed by quantum correlations by 10 standard deviations, demonstrating the genuine five-partite entanglement in a hybrid quantum system.

8.
Phys Rev Lett ; 124(12): 120501, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32281851

RESUMEN

To realize fault-tolerant quantum computing, it is necessary to store quantum information in logical qubits with error correction functions, realized by distributing a logical state among multiple physical qubits or by encoding it in the Hilbert space of a high-dimensional system. Quantum gate operations between these error-correctable logical qubits, which are essential for implementation of any practical quantum computational task, have not been experimentally demonstrated yet. Here we demonstrate a geometric method for realizing controlled-phase gates between two logical qubits encoded in photonic fields stored in cavities. The gates are realized by dispersively coupling an ancillary superconducting qubit to these cavities and driving it to make a cyclic evolution depending on the joint photonic state of the cavities, which produces a conditional geometric phase. We first realize phase gates for photonic qubits with the logical basis states encoded in two quasiorthogonal coherent states, which have important implications for continuous-variable-based quantum computation. Then we use this geometric method to implement a controlled-phase gate between two binomially encoded logical qubits, which have an error-correctable function.

9.
Opt Express ; 27(22): 31864-31873, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684410

RESUMEN

Entangled coherent states for multiple bosonic modes, also referred to as multimode cat states, not only are of fundamental interest but also have practical applications. The nonclassical correlation among these modes is well characterized by the violation of the Mermin-Klyshko inequality. We here study Mermin-Klyshko inequality violations for such multi-mode entangled states with rotated quantum-number parity operators. It is shown that the Mermin-Klyshko signal obtained with these operators can approach the maximal value even when the average quantum number in each mode is only 1, and the inequality violation exponentially increases with the number of entangled modes. This is in distinct contrast with the framework based on displaced parity operators, with which a nearly maximal Mermin-Klyshko inequality violation requires the size of the cat state to be increased by about 15 times.

10.
Opt Lett ; 44(7): 1726-1729, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30933132

RESUMEN

Entanglement of quasiclassical (coherent) states of two harmonic oscillators leads to striking quantum effects and is useful for quantum technologies. These effects and applications are closely related to nonlocal correlations inherent in these states, manifested by the violation of Bell inequalities. With previous frameworks, this violation is limited by the size of the system, which does not approach the maximum, even when the amount of entanglement approaches its maximum. Here, we propose a new version of Bell correlation operators, with which a nearly maximal violation can be obtained, as long as the associated entanglement approximates to the maximum. Consequently, the revealed nonlocality is significantly stronger than those with previous frameworks for a wide range of the system size. We present a new scheme for realizing the gate necessary for measurement of the nonlocal correlations. In addition to the use in test of quantum nonlocality, this gate is useful for quantum information processing with coherent states.

11.
Phys Rev Lett ; 123(6): 060502, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491139

RESUMEN

Entanglement swapping, the process to entangle two particles without coupling them in any way, is one of the most striking manifestations of the quantum-mechanical nonlocal characteristic. Besides fundamental interest, this process has applications in complex entanglement manipulation and quantum communication. Here we report a high-fidelity, unconditional entanglement swapping experiment in a superconducting circuit. The measured concurrence characterizing the qubit-qubit entanglement produced by swapping is above 0.75, confirming most of the entanglement of one qubit with its partner is deterministically transferred to another qubit that has never interacted with it. We further realize delayed-choice entanglement swapping, showing whether two qubits previously behaved as in an entangled state or as in a separable state is determined by a later choice of the type of measurement on their partners. This is the first demonstration of entanglement-separability duality in a deterministic way.

12.
Phys Rev Lett ; 121(13): 130501, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30312077

RESUMEN

A central task towards building a practical quantum computer is to protect individual qubits from decoherence while retaining the ability to perform high-fidelity entangling gates involving arbitrary two qubits. Here we propose and demonstrate a dephasing-insensitive procedure for storing and processing quantum information in an all-to-all connected superconducting circuit involving multiple frequency-tunable qubits, each of which can be controllably coupled to any other through a central bus resonator. Although it is generally believed that the extra frequency tunability enhances the control freedom but induces more dephasing impact for superconducting qubits, our results show that any individual qubit can be dynamically decoupled from dephasing noise by applying a weak continuous and resonant driving field whose phase is reversed in the middle of the pulse. More importantly, we demonstrate a new method for realizing a two-qubit phase gate with inherent dynamical decoupling via the combination of continuous driving and qubit-qubit swapping coupling. We find that the weak continuous driving fields not only enable the conditional dynamics essential for quantum information processing, but also protect both qubits from dephasing during the gate operation.

13.
Phys Rev Lett ; 121(3): 030502, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085793

RESUMEN

Anyons are quasiparticles occurring in two dimensions, whose topological properties are believed to be robust against local perturbations and may hold promise for fault tolerant quantum computing. Here we present an experiment of demonstrating the path independent nature of anyonic braiding statistics with a superconducting quantum circuit, which represents a 7-qubit version of the toric code model. We dynamically create the ground state of the model, achieving a state fidelity of 0.688±0.015 as verified by quantum state tomography. Anyonic excitations and braiding operations are subsequently implemented with single-qubit rotations. The braiding robustness is witnessed by looping an anyonic excitation around another one along two distinct, but topologically equivalent paths: Both reveal the nontrivial π-phase shift, the hallmark of Abelian 1/2 anyons, with a phase accuracy of ∼99% in the Ramsey-type interference measurement.

14.
Phys Rev Lett ; 118(22): 223604, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28621980

RESUMEN

We propose and experimentally demonstrate a new method to generate arbitrary Fock state superpositions in a superconducting quantum circuit, where a qubit is dispersively coupled to a microwave cavity mode. Here, the qubit is used to conditionally modulate the probability amplitudes of the Fock state components of a coherent state to those of the desired superposition state, instead of pumping photons one by one into the cavity as in previous schemes. Our method does not require the adjustment of the qubit frequency during the cavity state preparation and is more robust to noise and accumulation of experimental errors compared to previous ones. Using the method, we experimentally generate phase eigenstates under various Hilbert-space dimensions and squeezed states, which are useful for the quantum walk and high-precision measurement.

15.
Phys Rev Lett ; 119(18): 180511, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219550

RESUMEN

Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.

16.
Opt Express ; 24(20): 22847-22864, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27828352

RESUMEN

We propose a method to improve the stimulated Raman adiabatic passage (STIRAP) via dissipative quantum dynamics, taking into account the dephasing effects. Fast and robust population transfer can be obtained with the scheme by the designed pulses and detuning, even though the initial state of the system is imperfect. With a concrete three-level system as an example, the influences of the imperfect initial state, variations in the control parameters, and various dissipation effects are discussed in detail. The numerical simulation shows that the scheme is insensitive to moderate fluctuations of experimental parameters and the relatively large dissipation effects of the excited state. Furthermore, the dominant dissipative factors, namely, the dephasing effects of the ground states and the imperfect initial state are no longer undesirable, in fact, they are the important resources to the scheme. Therefore, the scheme could provide more choices for the realization of the complete population transfer in the strong dissipative fields where the standard stimulated Raman adiabatic passage or shortcut schemes are invalid.

17.
Phys Rev Lett ; 115(26): 260403, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26764976

RESUMEN

A quantum system can behave as a wave or as a particle, depending on the experimental arrangement. When, for example, measuring a photon using a Mach-Zehnder interferometer, the photon acts as a wave if the second beam splitter is inserted, but as a particle if this beam splitter is omitted. The decision of whether or not to insert this beam splitter can be made after the photon has entered the interferometer, as in Wheeler's famous delayed-choice thought experiment. In recent quantum versions of this experiment, this decision is controlled by a quantum ancilla, while the beam splitter is itself still a classical object. Here, we propose and realize a variant of the quantum delayed-choice experiment. We configure a superconducting quantum circuit as a Ramsey interferometer, where the element that acts as the first beam splitter can be put in a quantum superposition of its active and inactive states, as verified by the negative values of its Wigner function. We show that this enables the wave and particle aspects of the system to be observed with a single setup, without involving an ancilla that is not itself a part of the interferometer. We also study the transition of this quantum beam splitter from a quantum to a classical object due to decoherence, as observed by monitoring the interferometer output.

18.
Opt Lett ; 39(11): 3312-5, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24876041

RESUMEN

We propose a simple method for achieving a multiqubit phase gate of one qubit simultaneously controlling n target qubits, by using three-level quantum systems (i.e., qutrits) coupled to a cavity or resonator. The gate can be realized via one operational step, without need of classical pulses, and by a virtual photon process. Thus, the gate operation is greatly simplified and decoherence from the cavity decay is much reduced, when compared with previous proposals. In addition, the operation time is independent of the number of qubits and no adjustment of the qutrit level spacings or the cavity frequency is needed during the operation.

19.
Opt Lett ; 39(20): 6046-9, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25361152

RESUMEN

Inspired by a recent paper [J. Phys. B 47, 055502 (2014)], we propose a simplified scheme to generate and stabilize a Bell state of two qubits coupled to a resonator. In the scheme only one qubit is needed to be driven by external classical fields, and the entanglement dynamics is independent of the phases of these fields and insensitive to their amplitude fluctuations. This is a distinct advantage as compared with the previous ones that require each qubit to be addressed by well-controlled classical fields. Numerical simulation shows that the steady singlet state with high fidelity can be obtained with currently available techniques in circuit quantum electrodynamics.

20.
Nat Commun ; 8(1): 1061, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057880

RESUMEN

Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA