Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 70(3): 502-515.e8, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727620

RESUMEN

Nutrients are not only organic compounds fueling bioenergetics and biosynthesis, but also key chemical signals controlling growth and metabolism. Nutrients enormously impact the production of reactive oxygen species (ROS), which play essential roles in normal physiology and diseases. How nutrient signaling is integrated with redox regulation is an interesting, but not fully understood, question. Herein, we report that superoxide dismutase 1 (SOD1) is a conserved component of the mechanistic target of rapamycin complex 1 (mTORC1) nutrient signaling. mTORC1 regulates SOD1 activity through reversible phosphorylation at S39 in yeast and T40 in humans in response to nutrients, which moderates ROS level and prevents oxidative DNA damage. We further show that SOD1 activation enhances cancer cell survival and tumor formation in the ischemic tumor microenvironment and protects against the chemotherapeutic agent cisplatin. Collectively, these findings identify a conserved mechanism by which eukaryotes dynamically regulate redox homeostasis in response to changing nutrient conditions.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes/metabolismo , Fosforilación/fisiología , Superóxido Dismutasa-1/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Daño del ADN/fisiología , Metabolismo Energético/fisiología , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
2.
Hepatology ; 75(5): 1123-1138, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34435708

RESUMEN

BACKGROUND AND AIMS: Androgen receptor (AR) has been reported to play an important role in the development and progression of man's prostate cancer. Hepatocellular carcinoma (HCC) is also male-dominant, but the role of AR in HCC remains poorly understood. Mechanistic target of rapamycin complex 1 (mTORC1) also has been reported to be highly activated in HCC. In this study, we aimed to explore the role of AR phosphorylation and its relationship with mTORC1 in hepatocarcinogenesis. APPROACH AND RESULTS: In vitro experiment, we observed that mTORC1 interacts with hepatic AR and phosphorylates it at S96 in response to nutrient and mitogenic stimuli in HCC cells. S96 phosphorylation promotes the stability, nuclear localization, and transcriptional activity of AR, which enhances de novo lipogenesis and proliferation in hepatocytes and induces liver steatosis and hepatocarcinogenesis in mice independently and cooperatively with androgen. Furthermore, high ARS96 phosphorylation is observed in human liver steatotic and HCC tissues and is associated with overall survival and disease-free survival, which has been proven as an independent survival predictor for patients with HCC. CONCLUSIONS: AR S96 phosphorylation by mTORC1 drives liver steatosis and HCC development and progression independently and cooperatively with androgen, which not only explains why HCC is man-biased but also provides a target molecule for prevention and treatment of HCC and a potential survival predictor in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Andrógenos , Animales , Carcinogénesis , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica , Humanos , Neoplasias Hepáticas/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Fosforilación , Receptores Androgénicos/metabolismo
3.
Hepatology ; 67(6): 2271-2286, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29220539

RESUMEN

Hepatocellular carcinoma (HCC) is a male-dominant cancer, and androgen receptor (AR) has been linked to the pathogenesis of HCC. However, AR expression and its precise role in HCC remain controversial. Moreover, previous antiandrogen and anti-AR clinical trials in HCC failed to demonstrate clinical benefits. In this study, we found that AR is overexpressed in the nucleus of approximately 37% of HCC tumors, which is significantly associated with advanced disease stage and poor survival. AR overexpression in HCC cells markedly alters AR-dependent transcriptome, stimulates oncogenic growth, and determines therapeutic response to enzalutamide, a second generation of AR antagonist. However, AR inhibition evokes feedback activation of AKT-mTOR (mechanistic target of rapamycin) signaling, a central regulator for cell growth and survival. On the other hand, mTOR promotes nuclear AR protein expression by restraining ubiquitin-dependent AR degradation and enhancing AR nuclear localization, providing a mechanistic explanation for nuclear AR overexpression in HCC. Finally, cotargeting AR and mTOR shows significant synergistic anti-HCC activity and decreases tumor burden by inducing apoptosis in vivo. CONCLUSION: Nuclear AR overexpression is associated with the progression and prognosis of HCC. However, enzalutamide alone has limited therapeutic utility attributed to feedback activation of the AKT-mTOR pathway. Moreover, mTOR drives nuclear AR overexpression. Cotargeting AR and mTOR is a promising therapeutic strategy for HCC. (Hepatology 2018;67:2271-2286).


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor Cross-Talk , Receptores Androgénicos/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Benzamidas , Carcinoma Hepatocelular/tratamiento farmacológico , Núcleo Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/uso terapéutico , Receptores Androgénicos/biosíntesis , Receptores Androgénicos/genética , Células Tumorales Cultivadas
4.
Cell Mol Life Sci ; 74(14): 2613-2625, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28238105

RESUMEN

Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase that plays a critical role in the control of cellular growth and metabolism. Hyperactivation of mTOR pathway is common in human cancers, driving uncontrolled proliferation. MicroRNA (miRNA) is a class of short noncoding RNAs that regulate the expression of a wide variety of genes. Deregulation of miRNAs is a hallmark of cancer. Recent studies have revealed interplays between miRNAs and the mTOR pathway during cancer development. Such interactions appear to provide a fine-tuning of various cellular functions and contribute qualitatively to the behavior of cancer. Here we provide an overview of current knowledge regarding the reciprocal relationship between miRNAs and mTOR pathway: regulation of mTOR signaling by miRNAs and control of miRNA biogenesis by mTOR. Further research in this area may prove important for the diagnosis and therapy of human cancer.


Asunto(s)
MicroARNs/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Carcinogénesis/genética , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Modelos Biológicos , Transducción de Señal/genética
5.
Nucleic Acids Res ; 44(18): 8855-8869, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27566146

RESUMEN

SOX9 encodes a transcription factor that governs cell fate specification throughout development and tissue homeostasis. Elevated SOX9 is implicated in the genesis and progression of human tumors by increasing cell proliferation and epithelial-mesenchymal transition. We found that in response to UV irradiation or genotoxic chemotherapeutics, SOX9 is actively degraded in various cancer types and in normal epithelial cells, through a pathway independent of p53, ATM, ATR and DNA-PK. SOX9 is phosphorylated by GSK3ß, facilitating the binding of SOX9 to the F-box protein FBW7α, an E3 ligase that functions in the DNA damage response pathway. The binding of FBW7α to the SOX9 K2 domain at T236-T240 targets SOX9 for subsequent ubiquitination and proteasomal destruction. Exogenous overexpression of SOX9 after genotoxic stress increases cell survival. Our findings reveal a novel regulatory mechanism for SOX9 stability and uncover a unique function of SOX9 in the cellular response to DNA damage. This new mechanism underlying a FBW7-SOX9 axis in cancer could have implications in therapy resistance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas F-Box/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor de Transcripción SOX9/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antineoplásicos/farmacología , Muerte Celular , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Proteína 7 que Contiene Repeticiones F-Box-WD , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Modelos Biológicos , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Factor de Transcripción SOX9/química , Ubiquitinación , Rayos Ultravioleta/efectos adversos
6.
Hepatology ; 63(6): 1928-42, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26910647

RESUMEN

UNLABELLED: The phosphatidylinositol 3-kinase/phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase/protein kinase B/mammalian target of rapamycin (PI3K-PTEN-AKT-mTOR) pathway is a central controller of cell growth and a key driver for human cancer. MAF1 is an mTOR downstream effector and transcriptional repressor of ribosomal and transfer RNA genes. MAF1 expression is markedly reduced in hepatocellular carcinomas, which is correlated with disease progression and poor prognosis. Consistently, MAF1 displays tumor-suppressor activity toward in vitro and in vivo cancer models. Surprisingly, blocking the synthesis of ribosomal and transfer RNAs is insufficient to account for MAF1's tumor-suppressor function. Instead, MAF1 down-regulation paradoxically leads to activation of AKT-mTOR signaling, which is mediated by decreased PTEN expression. MAF1 binds to the PTEN promoter, enhancing PTEN promoter acetylation and activity. CONCLUSION: In contrast to its canonical function as a transcriptional repressor, MAF1 can also act as a transcriptional activator for PTEN, which is important for MAF1's tumor-suppressor function. These results have implications in disease staging, prognostic prediction, and AKT-mTOR-targeted therapy in liver cancer. (Hepatology 2016;63:1928-1942).


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas Experimentales/metabolismo , Proteínas Represoras/metabolismo , Adulto , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Fosfohidrolasa PTEN/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
Acta Pharmacol Sin ; 36(10): 1163-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26299952

RESUMEN

Rapamycin and its analogs (rapalogs) are the first generation of mTOR inhibitors, which have the same molecular scaffold, but different physiochemical properties. Rapalogs are being tested in a wide spectrum of human tumors as both monotherapy and a component of combination therapy. Among them, temsirolimus and everolimus have been approved for the treatment of breast and renal cancer. However, objective response rates with rapalogs in clinical trials are modest and variable. Identification of biomarkers predicting response to rapalogs, and discovery of drug combinations with improved efficacy and tolerated toxicity are critical to moving this class of targeted therapeutics forward. This review focuses on the aberrations in the PI3K/mTOR pathway in human tumor cells or tissues as predictive biomarkers for rapalog efficacy. Recent results of combinational therapy using rapalogs and other anticancer drugs are documented. With the rapid development of next-generation genomic sequencing and precision medicine, rapalogs will provide greater benefits to cancer patients.


Asunto(s)
Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Sirolimus/análogos & derivados , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Biología Computacional/métodos , Humanos , Terapia Molecular Dirigida/métodos , Neoplasias/metabolismo , Medicina de Precisión/métodos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
8.
Cells ; 13(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38727317

RESUMEN

mTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate gene expression programs associated with growth and metabolic processes. Furthermore, the review underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epigenetic modifications. By integrating its functions in nutrient signaling and gene expression related to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis, malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling has the potential to lead to novel therapies against cancer and other growth-related diseases.


Asunto(s)
Núcleo Celular , Proliferación Celular , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Núcleo Celular/metabolismo , Animales , Epigénesis Genética , Transcripción Genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología
9.
EMBO J ; 28(15): 2220-30, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19574957

RESUMEN

We have found earlier that Tor1 binds to 5S rDNA chromatin but the functional significance has not been established. Here, we show that association with 5S rDNA chromatin is necessary for TOR complex 1 (TORC1) to regulate the synthesis of 5S ribosomal RNA and transfer RNAs (tRNAs) by RNA polymerase (Pol) III, as well as the phosphorylation and binding to Pol III-transcribed genes of the Pol III repressor Maf1. Interestingly, TORC1 does not bind to tRNA genes, suggesting that TORC1 modulates tRNA synthesis indirectly through Maf1 phosphorylation at the rDNA loci. We also find that Maf1 cytoplasmic localization is dependent on the SSD1-v allele. In W303 cells that carry the SSD1-d allele, Maf1 is constitutively nuclear but its nucleolar localization is inhibited by TORC1, indicating that TORC1 regulates nucleoplasm-to-nucleolus transport of Maf1. Finally, we show that TORC1 interacts with Maf1 in vivo and phosphorylates Maf1 in vitro, and regulates Maf1 nucleoplasm-to-nucleolus translocation. Together, these observations provide new insights into the chromatin-dependent mechanism by which TORC1 controls transcription by Pol III.


Asunto(s)
ADN Ribosómico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Polimerasa III/metabolismo , ARN Ribosómico 5S/biosíntesis , ARN de Transferencia/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Fosforilación , Unión Proteica , Saccharomyces cerevisiae/fisiología
10.
iScience ; 26(12): 108544, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38089586

RESUMEN

The generation of appropriate numbers and types of neurons is a prerequisite for assembling functional neural circuits. However, the molecular basis regulating retinal neuron number remains poorly understood. Here, we report that inactivation of the RNA polymerase (Pol) III inhibitor gene Maf1 in mice results in decreased retinal thickness and neuron number that cause attenuated electroretinogram (ERG) responses. Its absence causes aberrant differentiation of all retinal neuron types primarily by an RNA Pol II-dependent mechanism while promoting retinal progenitor cell proliferation via both Pol III- and Pol II-dependent mechanisms. Chromatin profiling and transcription assay reveal that Maf1 binds widely to the genome to regulate the expression of a large set of Pol II-transcribed genes involved in retinal cell proliferation, differentiation, and/or survival. Together, our data suggest that Maf1 may control retinal neuron number by a balanced regulation of cell proliferation, differentiation, and death via both Pol III-dependent and Pol II-dependent mechanisms.

11.
Nature ; 442(7106): 1058-61, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16900101

RESUMEN

TOR is the target of the immunosuppressant rapamycin and a key regulator of cell growth. It modulates diverse cellular processes in the cytoplasm and nucleus, including the expression of amino acid transporters, ribosomal RNAs and ribosomal proteins. Despite considerable recent progress, little is known about the spatial and temporal regulation of TOR signalling, particularly that leading into the nucleus. Here we show that Tor1 is dynamically distributed in the cytoplasm and nucleus in yeast. Tor1 nuclear localization is nutrient dependent and rapamycin sensitive: starvation or treatment with rapamycin causes Tor1 to exit from the nucleus. Tor1 nuclear localization is critical for 35S rRNA synthesis, but not for the expression of amino acid transporters and ribosomal protein genes. We show further that Tor1 is associated with 35S ribosomal DNA (rDNA) promoter chromatin in a rapamycin- and starvation-sensitive manner; this association is necessary for 35S rRNA synthesis and cell growth. These results indicate that the spatial regulation of TOR complex 1 (TORC1) might be involved in differential control of its target genes. TOR is known as a classic cytoplasmic kinase that mediates the cytoplasm-to-nucleus signalling by controlling the localization of transcription factors. Our data indicate that TOR might be more intimately involved in gene regulation than previously thought.


Asunto(s)
Núcleo Celular/metabolismo , ADN Ribosómico/genética , Genes Fúngicos/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Sirolimus/farmacología
12.
Theranostics ; 12(7): 3518-3533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547764

RESUMEN

Background: Hepatocellular Carcinoma (HCC) is a major form of liver cancer and a leading cause of cancer-related death worldwide. New insights into HCC pathobiology and mechanism of drug actions are urgently needed to improve patient outcomes. HCC undergoes metabolic reprogramming of glucose metabolism from respiration to aerobic glycolysis, a phenomenon known as the 'Warburg Effect' that supports rapid cancer cell growth, survival, and invasion. mTOR is known to promote Warburg Effect, but the underlying mechanism(s) remains poorly defined. The aim of this study is to understand the mechanism(s) and significance of mTOR regulation of aerobic glycolysis in HCC. Methods: We profiled mTORC1-dependent long non-coding RNAs (lncRNAs) by RNA-seq of HCC cells treated with rapamycin. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were used to explore the transcriptional regulation of NEAT1 by mTORC1. [U-13C]-glucose labeling and metabolomic analysis, extracellular acidification Rate (ECAR) by Seahorse XF Analyzer, and glucose uptake assay were used to investigate the role of mTOR-NEAT1-NONO signaling in the regulation of aerobic glycolysis. RNA immunoprecipitation (RIP) and NONO-binding motif scanning were performed to identify the regulatory mechanism of pre-mRNA splicing by mTOR-NEAT1. Myristoylated AKT1 (mAKT1)/NRASV12-driven HCC model developed by hydrodynamic transfection (HDT) was employed to explore the significance of mTOR-NEAT1 signaling in HCC tumorigenesis and mTOR-targeted therapy. Results: mTOR regulates lncRNA transcriptome in HCC and that NEAT1 is a major mTOR transcriptional target. Interestingly, although both NEAT1_1 and NEAT1_2 are down-regulated in HCC, only NEAT1_2 is significantly correlated with poor overall survival of HCC patients. NEAT1_2 is the organizer of nuclear paraspeckles that sequester the RNA-binding proteins NONO and SFPQ. We show that upon oncogenic activation, mTORC1 suppresses NEAT1_2 expression and paraspeckle biogenesis, liberating NONO/SFPQ, which in turn, binds to U5 within the spliceosome, stimulating mRNA splicing and expression of key glycolytic enzymes. This series of actions lead to enhanced glucose transport, aerobic glycolytic flux, lactate production, and HCC growth both in vitro and in vivo. Furthermore, the paraspeckle-mediated mechanism is important for the anticancer action of US FDA-approved drugs rapamycin/temsirolimus. Conclusions: These findings reveal a molecular mechanism by which mTOR promotes the 'Warburg Effect', which is important for the metabolism and development of HCC, and anticancer response of mTOR-targeted therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Glucosa , Glucólisis , Humanos , Neoplasias Hepáticas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Paraspeckles , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo
13.
Antioxidants (Basel) ; 11(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35204309

RESUMEN

SOD1 is the major superoxide dismutase responsible for catalyzing dismutation of superoxide to hydrogen peroxide and molecular oxygen. It is well known as an essential antioxidant enzyme for maintaining cellular redox homeostasis. SOD1 dysregulation has been associated with many diseases, including amyotrophic lateral sclerosis (ALS), cancer, accelerated aging, and age-related diseases. Recent studies also revealed that SOD1 can serve as a regulatory protein in cell signaling, transcription, and ribosome biogenesis. Notably, SOD1 is localized in the nucleus under both normal and pathological conditions, contributing to oxidative stress response and growth control. Moreover, increasing evidence points to the importance of nuclear SOD1 in the pathogenesis of ALS and cancer.

14.
Eur J Cell Biol ; 101(3): 151240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35623230

RESUMEN

Amino Acids are not only major nutrient sources, but also serve as chemical signals to control cellular growth. Rab1A recently emerged as a key component in amino acid sensing and signaling to activate the mTOR complex1 (mTORC1). In a recently published study [1], we generated tamoxifen-inducible, conditional whole-body Rab1A knockout in adult mice. These mice are viable but develop hyperglycemia and glucose intolerance. Interestingly, Rab1A ablation selectively reduces insulin expression and pancreatic beta-cell population. Mechanistically, branched chain amino acids (BCAA), through the Rab1A-mTORC1 complex, promote the stability and nuclear localization of Pdx1, a master transcription factor that controls growth, function and identity of pancreatic beta-cells. These findings reveal a role and underlying mechanism by which amino acids control body's glucose level through a beta-cell specific function by the Rab1A-mTORC1-Pdx1 signaling axis, which has implications in both diabetes and cancer.


Asunto(s)
Aminoácidos , Glucemia , Aminoácidos/metabolismo , Animales , Glucemia/metabolismo , Glucosa , Insulina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Transducción de Señal
15.
Drug Discov Today ; 26(6): 1539-1546, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561464

RESUMEN

Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and a leading cause of cancer deaths worldwide. HCC is a male-dominant cancer with a male:female ratio of up to 7:1. The androgen receptor (AR) is the male hormone receptor known as a major oncogenic driver of prostate cancer. Although AR has been linked to the sexual dimorphism of HCC, clinical trials with AR-targeted agents failed to generate survival benefits. Recent studies provide new insights into the role of AR in liver tumorigenesis and therapeutic responses. Herein, we review current understanding of AR signaling in HCC and feedback mechanisms that limit response to AR blockade. New AR-targeting strategies that might improve outcomes in HCC therapies are also discussed.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Receptores Androgénicos/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/epidemiología , Femenino , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/epidemiología , Masculino , Terapia Molecular Dirigida , Caracteres Sexuales , Distribución por Sexo , Transducción de Señal/fisiología , Sobrevida
16.
Cancer Res ; 81(22): 5652-5665, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34429326

RESUMEN

The SWI/SNF chromatin remodeling complexes control accessibility of chromatin to transcriptional and coregulatory machineries. Chromatin remodeling plays important roles in normal physiology and diseases, particularly cancer. The ARID1A-containing SWI/SNF complex is commonly mutated and thought to be a key tumor suppressor in hepatocellular carcinoma (HCC), but its regulation in response to oncogenic signals remains poorly understood. mTOR is a conserved central controller of cell growth and an oncogenic driver of HCC. Remarkably, cancer mutations in mTOR and SWI/SNF complex are mutually exclusive in human HCC tumors, suggesting that they share a common oncogenic function. Here, we report that mTOR complex 1 (mTORC1) interact with ARID1A and regulates ubiquitination and proteasomal degradation of ARID1A protein. The mTORC1-ARID1A axis promoted oncogenic chromatin remodeling and YAP-dependent transcription, thereby enhancing liver cancer cell growth in vitro and tumor development in vivo. Conversely, excessive ARID1A expression counteracted AKT-driven liver tumorigenesis in vivo. Moreover, dysregulation of this axis conferred resistance to mTOR-targeted therapies. These findings demonstrate that the ARID1A-SWI/SNF complex is a regulatory target for oncogenic mTOR signaling, which is important for mTORC1-driven hepatocarcinogenesis, with implications for therapeutic interventions in HCC. SIGNIFICANCE: mTOR promotes oncogenic chromatin remodeling by controlling ARID1A degradation, which is important for liver tumorigenesis and response to mTOR- and YAP-targeted therapies in hepatocellular carcinoma.See related commentary by Pease and Fernandez-Zapico, p. 5608.


Asunto(s)
Carcinoma Hepatocelular/patología , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Mutación , Pronóstico , Proteolisis , Tasa de Supervivencia , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genética , Células Tumorales Cultivadas , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cell Rep ; 34(11): 108830, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730578

RESUMEN

Rab1A is a small GTPase known for its role in vesicular trafficking. Recent evidence indicates that Rab1A is essential for amino acids (aas) sensing and signaling to regulate mTORC1 in normal and cancer cells. However, Rab1A's in vivo function in mammals is not known. Here, we report the generation of tamoxifen (TAM)-induced whole body Rab1A knockout (Rab1A-/-) in adult mice. Rab1A-/- mice are viable but become hyperglycemic and glucose intolerant due to impaired insulin transcription and ß-cell proliferation and maintenance. Mechanistically, Rab1A mediates AA-mTORC1 signaling, particularly branched chain amino acids (BCAA), to regulate the stability and localization of the insulin transcription factor Pdx1. Collectively, these results reveal a physiological role of aa-Rab1A-mTORC1 signaling in the control of whole-body glucose homeostasis in mammals. Intriguingly, Rab1A expression is reduced in ß-cells of type 2 diabetes (T2D) patients, which is correlated with loss of insulin expression, suggesting that Rab1A downregulation contributes to T2D progression.


Asunto(s)
Aminoácidos/metabolismo , Glucosa/metabolismo , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rab1/metabolismo , Animales , Núcleo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/metabolismo , Proteínas de Homeodominio/metabolismo , Hiperglucemia/metabolismo , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Especificidad de Órganos , Estabilidad Proteica , Transporte de Proteínas , Transactivadores/metabolismo , Transcripción Genética
18.
Mol Biol Cell ; 18(3): 1073-82, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17215520

RESUMEN

Mammalian target of rapamycin (mTOR) forms two complexes, mTORC1 and mTORC2, that play central roles in cell growth and functions. Only mTORC1 is directly inhibited by the immunosuppressive drug rapamycin. Despite recent progress in identifying new components and functions of the mTOR pathway, relatively little is known about the spatial arrangement of mTOR signaling and the underlying mechanisms. In a previous study, we showed that a large proportion of mTOR is localized to the endoplasmic reticulum (ER) and Golgi in many common cell lines. Here, we report the identification of an internal mTOR sequence that contains two HEAT (HT) repeats, HT18 and HT19, and two intervening interunit spacers (IUSs), IUS17 and IUS18, which is sufficient to target enhanced green fluorescent protein to the Golgi. Surprisingly, deletion of IUS17 from this Golgi localization sequence (GLS) converts it to an ER localization sequence (ELS). Deletion of HT19, a common element of both GLS and ELS from the full-length mTOR, causes delocalization of mTOR and inhibits the ability of mTOR to promote S6 phosphorylation. Moreover, overexpression of GLS and ELS inhibits both mTOR complexes. Together, our results reveal unusual ER- and Golgi-targeting sequences and suggest that anchoring to these organelles is important for the functions of mTOR complexes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Señales de Clasificación de Proteína , Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Fosforilación , Transporte de Proteínas , Secuencias Repetitivas de Aminoácido , Proteínas Quinasas S6 Ribosómicas/metabolismo , Eliminación de Secuencia , Fracciones Subcelulares , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo
19.
Mol Cell Oncol ; 5(5): e1488372, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30263944

RESUMEN

Maintaining cellular redox is critical for growth, metabolism and survival in response to changing environments. How nutrients regulate this process is a long-standing fundamental question in cell biology. Our recent study revealed a conserved mechanism by which eukaryotes, particularly cancer cells, couple nutrient signaling to dynamically regulate redox homeostasis. Abbreviations: ATP: adenosine triphosphate; Ala: alanine; C6H12O6: glucose; OH-: hydroxyl radical; Glu: glutamate; mRNA: messenger RNA; mTOR: mechanistic/mammalian target of rapamycin; OXYPHOS: oxidative phosphorylation; Ser: serine; ROS: reactive oxygen species; O2 -: superoxide; SOD1: superoxide dismutase 1; Thr: threonine.

20.
Oncol Rep ; 40(5): 2750-2757, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30106159

RESUMEN

Deregulated microRNAs play an important role in the development and progression of various types of cancer. In our previous study, we observed that microRNA­342­3p (miR­342­3p) was one of the most markedly downregulated microRNAs in two nasopharyngeal carcinoma (NPC) cell lines compared to non­neoplastic cells by using whole genome small RNA sequencing. In the present study, we confirmed that the expression of miR­342­3p was significantly reduced in NPC tissues compared with normal nasopharyngeal epithelial tissues. Overexpression of miR­342­3p inhibited proliferation, epithelial­mesenchymal transition (EMT), migration and invasiveness of NPC cells. In addition, we observed that Cdc42, a Rho GTPase family member involved in cell proliferation and metastasis, is a direct target of miR­342­3p. Additionally, ML141, a small­molecule inhibitor of Cdc42, efficiently suppressed the invasion of NPC cells compared with the control cells. Finally, we analyzed NPC tissues derived from 10 NPC patients and subjected them to quantitative RT­PCR and immunohistochemistry assays for concomitant determination of the expression levels of miR­342­3p and Cdc42. Our results revealed that miR­342­3p levels were significantly inversely correlated with the protein levels of its target Cdc42. The results of the present study indicated that miR­342­3p inhibited NPC tumor growth and invasion by directly targeting the Cdc42 pathway.


Asunto(s)
Carcinoma/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias Nasofaríngeas/genética , Proteína de Unión al GTP cdc42/genética , Biopsia , Carcinoma/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Epitelio/patología , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Nasofaringitis/patología , Nasofaringe/citología , Nasofaringe/patología , Invasividad Neoplásica/genética , Pirazoles/farmacología , Sulfonamidas/farmacología , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Proteína de Unión al GTP cdc42/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA