Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675497

RESUMEN

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal/fisiología , Encefalopatías Metabólicas/metabolismo , Estrés Psicológico/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Ansiedad/genética , Ansiedad/inmunología , Ansiedad/fisiopatología , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/fisiopatología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Dinámicas Mitocondriales/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Análisis de la Célula Individual , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Transcriptoma/genética , Xantina/metabolismo
2.
Immunity ; 54(6): 1168-1185.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038747

RESUMEN

Chronic inflammation plays a central role in hepatocellular carcinoma (HCC), but the contribution of hepatocytes to tumor-associated inflammation is not clear. Here, we report that the zinc finger transcription factor Miz1 restricted hepatocyte-driven inflammation to suppress HCC, independently of its transcriptional activity. Miz1 was downregulated in HCC mouse models and a substantial fraction of HCC patients. Hepatocyte-specific Miz1 deletion in mice generated a distinct sub-group of hepatocytes that produced pro-inflammatory cytokines and chemokines, which skewed the polarization of the tumor-infiltrating macrophages toward pro-inflammatory phenotypes to promote HCC. Mechanistically, Miz1 sequestrated the oncoprotein metadherin (MTDH), preventing MTDH from promoting transcription factor nuclear factor κB (NF-κB) activation. A distinct sub-group of pro-inflammatory cytokine-producing hepatocytes was also seen in a subset of HCC patients. In addition, Miz1 expression inversely correated with disease recurrence and poor prognosis in HCC patients. Our findings identify Miz1 as a tumor suppressor that prevents hepatocytes from driving inflammation in HCC.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Hepatocitos/metabolismo , Inflamación/metabolismo , Neoplasias Hepáticas/metabolismo , Activación de Macrófagos/fisiología , Proteínas Inhibidoras de STAT Activados/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Línea Celular , Línea Celular Tumoral , Quimiocinas/metabolismo , Regulación hacia Abajo/fisiología , Femenino , Células HEK293 , Hepatocitos/patología , Humanos , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Dedos de Zinc/fisiología
3.
Mol Ther ; 32(1): 204-217, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37952086

RESUMEN

Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.


Asunto(s)
Sordera , Pérdida Auditiva , Animales , Humanos , Ratones , Sordera/genética , Audición/genética , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Ratones Noqueados , Proteínas/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Estereocilios/metabolismo
4.
J Biol Chem ; 296: 100776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33992645

RESUMEN

The adhesion G protein-coupled receptor CD97 and its ligand complement decay-accelerating factor CD55 are important binding partners in the human immune system. Dysfunction in this binding has been linked to immune disorders such as multiple sclerosis and rheumatoid arthritis, as well as various cancers. Previous literatures have indicated that the CD97 includes 3 to 5 epidermal growth factor (EGF) domains at its N terminus and these EGF domains can bind to the N-terminal short consensus repeat (SCR) domains of CD55. However, the details of this interaction remain elusive, especially why the CD55 binds with the highest affinity to the shortest isoform of CD97 (EGF1,2,5). Herein, we designed a chimeric expression construct with the EGF1,2,5 domains of CD97 and the SCR1-4 domains of CD55 connected by a flexible linker and determined the complex structure by crystallography. Our data reveal that the two proteins adopt an overall antiparallel binding mode involving the SCR1-3 domains of CD55 and all three EGF domains of CD97. Mutagenesis data confirmed the importance of EGF5 in the interaction and explained the binding specificity between CD55 and CD97. The architecture of CD55-CD97 binding mode together with kinetics suggests a force-resisting shearing stretch geometry when forces applied to the C termini of both proteins in the circulating environment. The potential of the CD55-CD97 complex to withstand tensile force may provide a basis for the mechanosensing mechanism for activation of adhesion G protein-coupled receptors.


Asunto(s)
Antígenos CD/metabolismo , Antígenos CD55/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD/química , Antígenos CD55/química , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/química
5.
Opt Express ; 30(25): 45376-45392, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522944

RESUMEN

Benefit from their near-unity photoluminescence quantum yield (PL QY), narrow emission band, and widely tunable bandgap, metal halide perovskites have shown promising in light-emitting applications. Despite such promise, how to facile, environmentally-friendly, and large-scale prepare solid metal halide perovskite with high emission and stability remains a challenging. Herein, we demonstrate a convenient and environmentally-friendly method for the mass synthesis of solid CsPbBr3/Cs4PbBr6 composites using high-power ultrasonication. Adjusting key experimental parameters, bright emitting CsPbBr3/Cs4PbBr6 solids with a maximum PL QY of 71% were obtained within 30 min. XRD, SEM, TEM, Abs/PL, XPS, and lifetime characterizations provide solid evidence for forming CsPbBr3/Cs4PbBr6 composites. Taking advantage of these composites, the photostability, thermostability, and polar solvent stability of CsPbBr3/Cs4PbBr6 are much improved compared to CsPbBr3. We further demonstrated CsPbBr3/Cs4PbBr6 use in flexible/stretchable film and high-power WLEDs. After being subjected to bending, folding, and twisting, the film retains its bright emission and exhibits good resistance to mechanical deformation. Additionally, our WLEDs display a superior, durable high-power-driving capability, operating currents up to 300 mA and maintaining high luminous intensity for 50 hours. Such highly emissive and stable metal halide perovskites make them promising for solid-state lighting, lasing, and flexible/stretchable display device applications.

6.
Mol Ther ; 28(9): 2083-2095, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526202

RESUMEN

Transcription growth factor ß (TGF-ß) signaling-triggered epithelial-to-mesenchymal transition (EMT) process is associated with tumor stemness, metastasis, and chemotherapy resistance. However, the epigenomic basis for TGF-ß-induced EMT remains largely unknown. Here we reveal that HDAC1-mediated global histone deacetylation and the gain of specific histone H3 lysine 27 acetylation (H3K27ac)-marked enhancers are essential for the TGF-ß-induced EMT process. Enhancers gained upon TGF-ß treatment are linked to gene activation of EMT markers and cancer metastasis. Notably, dynamic enhancer gain or loss mainly occurs within pre-existing topologically associated domains (TADs) in epithelial cells, with minimal three-dimensional (3D) genome architecture reorganization. Through motif enrichment analysis of enhancers that are lost or gained upon TGF-ß stimulation, we identify FOXA2 as a key factor to activate epithelial-specific enhancer activity, and we also find that TEAD4 forms a complex with SMAD2/3 to mediate TGF-ß signaling-triggered mesenchymal enhancer reprogramming. Together, our results implicate that key transcription-factor (TF)-mediated enhancer reprogramming modulates the developmental transition in TGF-ß signaling-associated cancer metastasis.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Elementos de Facilitación Genéticos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Células A549 , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Factor Nuclear 3-beta del Hepatocito/metabolismo , Hepatocitos/metabolismo , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Humanos , Ratones , Proteínas Musculares/metabolismo , Metástasis de la Neoplasia , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
7.
Gene Ther ; 27(7-8): 406, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32778810

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Gene Ther ; 27(7-8): 329-337, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32424232

RESUMEN

Gene therapy for auditory diseases is gradually maturing. Recent progress in gene therapy treatments for genetic and acquired hearing loss has demonstrated the feasibility in animal models. However, a number of hurdles, such as lack of safe viral vector with high efficiency and specificity, robust deafness large animal models, translating animal studies to clinic etc., still remain to be solved. It is necessary to overcome these challenges in order to effectively recover auditory function in human patients. Here, we review the progress made in our group, especially our efforts to make more effective and cell type-specific viral vectors for targeting cochlea cells.


Asunto(s)
Dependovirus , Terapia Genética , Pérdida Auditiva , Animales , Cóclea , Dependovirus/genética , Vectores Genéticos/genética , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Humanos
10.
Mol Cell Neurosci ; 61: 241-54, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25066865

RESUMEN

Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in Actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, act(E84K), harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous act(E84K) mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. act(E84K) mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Discs-Large are all mislocalized in act(E84K) mutants. Genetic interactions between act(E84K) and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization.


Asunto(s)
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Receptores de Glutamato/metabolismo , Actinas/genética , Factores de Edad , Animales , Animales Modificados Genéticamente , Proteínas de Unión al Calcio/metabolismo , Drosophila , Proteínas de Drosophila/genética , Regulación de la Expresión Génica/genética , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Larva , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación/efectos de los fármacos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/ultraestructura , Técnicas de Placa-Clamp , Receptores de Glutamato/genética , Potenciales Sinápticos/genética , Calponinas
11.
Proc Natl Acad Sci U S A ; 109(35): 13978-83, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891300

RESUMEN

Imaging membranes in live cells with nanometer-scale resolution promises to reveal ultrastructural dynamics of organelles that are essential for cellular functions. In this work, we identified photoswitchable membrane probes and obtained super-resolution fluorescence images of cellular membranes. We demonstrated the photoswitching capabilities of eight commonly used membrane probes, each specific to the plasma membrane, mitochondria, the endoplasmic recticulum (ER) or lysosomes. These small-molecule probes readily label live cells with high probe densities. Using these probes, we achieved dynamic imaging of specific membrane structures in living cells with 30-60 nm spatial resolution at temporal resolutions down to 1-2 s. Moreover, by using spectrally distinguishable probes, we obtained two-color super-resolution images of mitochondria and the ER. We observed previously obscured details of morphological dynamics of mitochondrial fusion/fission and ER remodeling, as well as heterogeneous membrane diffusivity on neuronal processes.


Asunto(s)
Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Nanoestructuras/ultraestructura , Orgánulos/ultraestructura , Compuestos de Boro/química , Carbocianinas/química , Membrana Celular/ultraestructura , Dendritas/ultraestructura , Retículo Endoplásmico/ultraestructura , Hipocampo/citología , Membrana Dobles de Lípidos , Lisosomas/ultraestructura , Microscopía Fluorescente/instrumentación , Mitocondrias/ultraestructura , Neuronas/ultraestructura , Seudópodos/ultraestructura , Procesos Estocásticos
12.
Materials (Basel) ; 17(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399161

RESUMEN

With the rapid development of the advanced manufacturing industry, equipment requirements are becoming increasingly stringent. Since metallic materials often present failure problems resulting from wear due to extreme service conditions, researchers have developed various methods to improve their properties. Laser shock peening (LSP) is a highly efficacious mechanical surface modification technique utilized to enhance the microstructure of the near-surface layer of metallic materials, which improves mechanical properties such as wear resistance and solves failure problems. In this work, we summarize the fundamental principles of LSP and laser-induced plasma shock waves, along with the development of this technique. In addition, exemplary cases of LSP treatment used for wear resistance improvement in metallic materials of various nature, including conventional metallic materials, laser additively manufactured parts, and laser cladding coatings, are outlined in detail. We further discuss the mechanism by which the microhardness enhancement, grain refinement, and beneficial residual stress are imparted to metallic materials by using LSP treatment, resulting in a significant improvement in wear resistance. This work serves as an important reference for researchers to further explore the fundamentals and the metallic material wear resistance enhancement mechanism of LSP.

13.
Cell Stem Cell ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38772378

RESUMEN

Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.

14.
Nanomaterials (Basel) ; 13(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36678108

RESUMEN

Inorganic lead halide perovskite is one of the most excellent fluorescent materials, and it plays an essential role in high-definition display and visible light communication (VLC). Its photochromic properties and stability determine the final performance of light-emitting devices. However, efficiently synthesizing perovskite with high quality and stability remains a significant challenge. Here, we develop a facile and environmentally friendly method for preparing high-stability and strong-emission CsPbBr3/Cs4PbBr6 composites using ultrasonication and liquid paraffin. Tuning the contents of liquid paraffin, bright-emission CsPbBr3/Cs4PbBr6 composite powders with a maximum PLQY of 74% were achieved. Thanks to the protection of the Cs4PbBr6 matrix and liquid paraffin, the photostability, thermostability, and polar solvent stability of CsPbBr3/Cs4PbBr6-LP are significantly improved compared to CsPbBr3 quantum dots and CsPbBr3/Cs4PbBr6 composites that were prepared without liquid paraffin. Moreover, the fabricated CsPbBr3/Cs4PbBr6-LP-based WLEDs show excellent luminescent performance with a power efficiency of 129.5 lm/W and a wide color gamut, with 121% of the NTSC and 94% of the Rec. 2020, demonstrating a promising candidate for displays. In addition, the CsPbBr3/Cs4PbBr6-LP-based WLEDs were also demonstrated in a VLC system. The results suggested the great potential of these high-performance WLEDs as an excitation light source to achieve VLC.

15.
Ultrason Sonochem ; 101: 106674, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924614

RESUMEN

Carbon dots (CDs) are a fascinating new type of fluorescent carbon nanomaterial with excellent photoelectric properties. However, preparing long-wavelength and multicolor-emitting CDs has been challenging, limiting their large-scale applications. Fortunately, a new efficient method has been proposed to co-regulate CDs' multicolor spectra using an ultrasonic microreactor. Inspired by plant leaves, a bionic vein microchannel was designed with good fluidity and high energy transfer efficiency. The optimal microchannel structural parameters were determined after investigating the effects of fractal angle, depth-to-width ratio, and inlet angle on the flow uniformity of the microchannel using numerical simulations. The efficiency of ultrasonic energy transfer was improved by directly coupling the microreactor and the sandwich transducer to fabricate the ultrasonic microreactor. Simulation results showed that the ultrasonic microreactor's vibration resonated along the longitudinal direction, and the ultrasonic intensity of the microreactor was maximal and uniform. A high-efficiency and controllable ultrasonic microreactor system was built to synthesize the CDs in situ. The influence of the ultrasound field intensity on CDs' preparation in a microreactor was simultaneously investigated to verify the ultrasound enhancement, and the PLQY of the high-performance CDs was found to be 83.1%. The CDs' multicolor spectra from the blue to the red region can be precisely tuned by adjusting key reaction parameters such as reaction temperature, flow rate, and precursor concentration. This new method shows promising applications in lighting, display, and other fields, making CDs a versatile and exciting new material to explore.

16.
J Physiol ; 590(19): 4735-59, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22869012

RESUMEN

We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type IIV2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network.We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the organization of spinal locomotor networks.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Animales , Animales Recién Nacidos , Técnicas In Vitro , Ratones , Ratones Endogámicos ICR , Modelos Neurológicos , N-Metilaspartato/farmacología , Serotonina/farmacología
17.
J Neurophysiol ; 108(8): 2191-202, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22832564

RESUMEN

Most studies of the mouse hindlimb locomotor network have used neonatal (P0-5) mice. In this study, we examine the postnatal development of intrinsic properties and serotonergic modulation of intersegmental commissural interneurons (CINs) from the neonatal period (P0-3) to the time the animals bear weight (P8-10) and begin to show adult walking (P14-16). CINs show an increase in excitability with age, associated with a decrease in action potential halfwidth and appearance of a fast component to the afterhyperpolarization at P14-16. Serotonin (5-HT) depolarizes and increases the excitability of most CINs at all ages. The major developmental difference is that serotonin can induce plateau potential capability in P14-16 CINs, but not at younger ages. These plateau potentials are abolished by nifedipine, suggesting that they are mediated by an L-type calcium current, I(Ca(L)). Voltage-clamp analysis demonstrates that 5-HT increases a nifedipine-sensitive voltage-activated calcium current, I(Ca(V)), in P14-16 CINs but does not increase I(Ca(V)) in P8-10 CINs. These results, together with earlier work on 5-HT effects on neonatal CINs, suggest that 5-HT increases the excitability of CINs at all ages studied, but by opposite effects on calcium currents, decreasing N- and P/Q-type calcium currents and, indirectly, calcium-activated potassium current, at P0-3 but increasing I(Ca(L)) at P14-16.


Asunto(s)
Potenciales de Acción/fisiología , Interneuronas/fisiología , Serotonina/farmacología , Médula Espinal/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Ratones , Ratones Endogámicos C57BL , Nifedipino/farmacología , Potasio/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo
18.
J Cell Biol ; 221(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34747980

RESUMEN

Mitochondria and peroxisomes are independent but functionally closely related organelles. A few proteins have been characterized as dual-organelle locating proteins with distinct or similar roles on mitochondria and peroxisomes. MARCH5 is a mitochondria-associated ubiquitin ligase best known for its regulatory role in mitochondria quality control, fission, and fusion. Here, we used a proximity tagging system, PUP-IT, and identified new interacting proteins of MARCH5. Our data uncover that MARCH5 is a dual-organelle locating protein that interacts with several peroxisomal proteins. PEX19 binds the transmembrane region on MARCH5 and targets it to peroxisomes. On peroxisomes, MARCH5 binds and mediates the ubiquitination of PMP70. Furthermore, we find PMP70 ubiquitination and pexophagy induced by mTOR inhibition are blocked in the absence of MARCH5. Our study suggests novel roles of MARCH5 on peroxisomes.


Asunto(s)
Macroautofagia , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Sanguíneas/farmacología , Células HeLa , Humanos , Células Jurkat , Lipoproteínas/metabolismo , Macroautofagia/efectos de los fármacos , Peroxinas/metabolismo , Peroxisomas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ubiquitinación
19.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144918

RESUMEN

Carbon dots (CDs) are attracting much interest due to their excellent photoelectric properties and wide range of potential applications. However, it is still a challenge to regulate their bandgap emissions to achieve full-color CDs with high emissions. Herein, we propose an approach for producing full-color emissive CDs by employing a solvent engineering strategy. By only tuning the volume ratio of water and dimethylformamide (H2O/DMF), the photoluminescence (PL) emission wavelengths of the CDs can be changed from 451 to 654 nm. Different fluorescence features of multicolor CDs were systematically investigated. XRD, SEM, TEM, Abs/PL/PLE, XPS, and PL decay lifetime characterizations provided conclusive evidence supporting the extent to which the solvent controlled the dehydration and carbonization processes of the precursors, leading to a variation in their emission color from red to blue. The as-prepared CDs exhibited excellent and stable fluorescence performance even after being heated at 80 °C for 48 h and with UV light continuously irradiated for 15 h. Based on their excellent fluorescent properties and photothermal stability, bright multicolor light-emitting diodes with a high CRI of up to 91 were obtained. We anticipate that these full-color emissive CDs are beneficial for applications in lighting, display, and other fields.

20.
Signal Transduct Target Ther ; 7(1): 109, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35449181

RESUMEN

The cochlea consists of multiple types of cells, including hair cells, supporting cells and spiral ganglion neurons, and is responsible for converting mechanical forces into electric signals that enable hearing. Genetic and environmental factors can result in dysfunctions of cochlear and auditory systems. In recent years, gene therapy has emerged as a promising treatment in animal deafness models. One major challenge of the gene therapy for deafness is to effectively deliver genes to specific cells of cochleae. Here, we screened and identified an AAV-ie mutant, AAV-ie-K558R, that transduces hair cells and supporting cells in the cochleae of neonatal mice with high efficiency. AAV-ie-K558R is a safe vector with no obvious deficits in the hearing system. We found that AAV-ie-K558R can partially restore the hearing loss in Prestin KO mice and, importantly, deliver Atoh1 into cochlear supporting cells to generate hair cell-like cells. Our results demonstrate the clinical potential of AAV-ie-K558R for treating the hearing loss caused by hair cell death.


Asunto(s)
Sordera , Pérdida Auditiva , Animales , Cóclea/metabolismo , Sordera/metabolismo , Sordera/terapia , Terapia Genética , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Pérdida Auditiva/terapia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA