Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 43(9): 2301-2310, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32542660

RESUMEN

Leaf stomatal density is known to co-vary with leaf vein density. However, the functional underpinning of this relation, and how it scales to whole-plant water transport anatomy, is still unresolved. We hypothesized that the balance of water exchange between the vapour phase (in stomata) and liquid phase (in vessels) depends on the consistent scaling between the summed stomatal areas and xylem cross-sectional areas, both at the whole-plant and single-leaf level. This predicted size co-variation should be driven by the co-variation of numbers of stomata and terminal vessels. We examined the relationships of stomatal traits and xylem anatomical traits from the entire plant to individual leaves across seedlings of 53 European woody angiosperm species. There was strong and convergent scaling between total stomatal area and stem xylem area per plant and between leaf total stomatal area and midvein xylem area per leaf across all the species, irrespective of variation in leaf habit, growth-form or relative growth rate. Moreover, strong scaling was found between stomatal number and terminal vessel number, whereas not in their respective average areas. Our findings have broad implications for integrating xylem architecture and stomatal distribution and deepen our understanding of the design rules of plants' water transport network.


Asunto(s)
Estomas de Plantas/fisiología , Plantones/fisiología , Xilema/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Estomas de Plantas/anatomía & histología , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo , Agua/metabolismo , Madera , Xilema/fisiología
2.
New Phytol ; 222(4): 1873-1882, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30742715

RESUMEN

Xylem conduit diameter (Dmax ) of woody angiosperm adults scales with plant size and widens from the stem apex downwards. We hypothesized that, notwithstanding relative growth rate (RGR), growth form or leaf habit, woody seedling conduit Dmax scales linearly with plant size across species; this scaling should be applicable to all vegetative organs, with consistent conduit widening from leaf via stem to main root and coupling with whole-leaf area and whole-stem xylem area. To test these hypotheses, organ-specific xylem anatomy traits and size-related traits in laboratory-grown seedlings were analyzed across 55 woody European species from cool-temperate and Mediterranean climates. As hypothesized, conduit Dmax of each organ showed similar scaling with plant size and consistent basipetal widening from the leaf midvein via the stem to the main root across species, independently of growth form, RGR and leaf habit. We also found a strong correlation between Dmax and average leaf area, and between stem xylem area and whole-plant leaf area. We conclude that seedlings of ecologically wide-ranging woody species converge in their allometric scaling of conduit diameters within and across plant organs. These relationships will contribute to modeling of water transport in woody vegetation that accounts for the whole life history from the trees' regeneration phase to adulthood.


Asunto(s)
Plantones/fisiología , Madera/fisiología , Xilema/fisiología , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA