RESUMEN
Wnt signaling is involved in self-renewal and maintenance of hematopoietic stem cells (HSCs); however, the particular role of noncanonical Wnt signaling in regulating HSCs in vivo is largely unknown. Here, we show Flamingo (Fmi) and Frizzled (Fz) 8, members of noncanonical Wnt signaling, both express in and functionally maintain quiescent long-term HSCs. Fmi regulates Fz8 distribution at the interface between HSCs and N-cadherin(+) osteoblasts (N-cad(+)OBs that enrich osteoprogenitors) in the niche. We further found that N-cad(+)OBs predominantly express noncanonical Wnt ligands and inhibitors of canonical Wnt signaling under homeostasis. Under stress, noncanonical Wnt signaling is attenuated and canonical Wnt signaling is enhanced in activation of HSCs. Mechanistically, noncanonical Wnt signaling mediated by Fz8 suppresses the Ca(2+)-NFAT- IFNγ pathway, directly or indirectly through the CDC42-CK1α complex and also antagonizes canonical Wnt signaling in HSCs. Taken together, our findings demonstrate that noncanonical Wnt signaling maintains quiescent long-term HSCs through Fmi and Fz8 interaction in the niche.
Asunto(s)
Cadherinas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células Madre , Vía de Señalización Wnt , Animales , Cadherinas/genética , Femenino , Células Madre Hematopoyéticas/citología , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo , Receptores Acoplados a Proteínas G/genéticaRESUMEN
Systemic diseases of liver origin (SDLO) are complex diseases in multiple organ systems, such as cardiovascular, musculoskeletal, endocrine, renal, respiratory, and sensory organ systems, caused by irregular liver metabolism and production of functional factors. Examples of such diseases discussed in this article include primary hyperoxaluria, familial hypercholesterolemia, acute hepatic porphyria, hereditary transthyretin amyloidosis, hemophilia, atherosclerotic cardiovascular diseases, α-1 antitrypsin deficiency-associated liver disease, and complement-mediated diseases. Nucleic acid therapeutics use nucleic acids and related compounds as therapeutic agents to alter gene expression for therapeutic purposes. The two most promising, fastest-growing classes of nucleic acid therapeutics are antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). For each listed SDLO disease, this article discusses epidemiology, symptoms, genetic causes, current treatment options, and advantages and disadvantages of nucleic acid therapeutics by either ASO or siRNA drugs approved or under development. Furthermore, challenges and future perspectives on adverse drug reactions and toxicity of ASO and siRNA drugs for the treatment of SDLO diseases are also discussed. In summary, this review article will highlight the clinical advantages of nucleic acid therapeutics in targeting the liver for the treatment of SDLO diseases. SIGNIFICANCE STATEMENT: Systemic diseases of liver origin (SDLO) contain rare and common complex diseases caused by irregular functions of the liver. Nucleic acid therapeutics have shown promising clinical advantages to treat SDLO. This article aims to provide the most updated information on targeting the liver with antisense oligonucleotides and small interfering RNA drugs. The generated knowledge may stimulate further investigations in this growing field of new therapeutic entities for the treatment of SDLO, which currently have no or limited options for treatment.
Asunto(s)
Hepatopatías , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Oligonucleótidos Antisentido/efectos adversos , Hepatopatías/tratamiento farmacológicoRESUMEN
Substance P (SP) is a neuropeptide released by neurons and participates in various biological processes, including inflammation. M2 macrophages are major immune cells associated with type 2 inflammation in asthma. This study investigated the effect of SP on macrophage phenotype in pediatric asthma and the underpinning factors. Asthmatic children exhibited an increased level of SP, along with a higher proportion of M2 macrophages in their bronchoalveolar lavage fluid. Flow cytometry revealed that SP treatment enhanced the M2 polarization of 12-O-tetradecanoylphorbol 13-acetate-treated THP-1 cells (macrophages) in vitro. By contrast, the administration of a neutralizing antibody of SP reduced the M2 macrophage population, mitigated inflammatory cell infiltration in mouse lung tissues, and decreased the population of immune cells in the mouse bronchoalveolar lavage fluid. SP up-regulated the expression of STAT6, which, in turn, activated the transcription of lymphocyte cytosolic protein 2 (LCP2). The population of macrophages and allergic inflammatory responses in mice were reduced by STAT6 inhibition but restored by LCP2 overexpression. Collectively, the present study demonstrated that SP sustains M2 macrophage predominance and allergic inflammation in pediatric asthma by enhancing STAT6-dependent transcription activation of LCP2.
Asunto(s)
Asma , Sustancia P , Niño , Humanos , Ratones , Animales , Sustancia P/farmacología , Activación Transcripcional , Asma/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Linfocitos/metabolismo , Factor de Transcripción STAT6 , Activación de MacrófagosRESUMEN
This study aimed to investigate the moderating role of aerobic fitness on the effect of acute exercise on improving executive function from both behavioral and cerebral aspects. Thirty-four young individuals with motor skills were divided into high- and low-fitness groups based on their maximal oxygen uptake. Both groups completed 30 min of moderate-intensity aerobic exercise on a power bike. Executive function tests (Flanker, N-back, More-odd-shifting) were performed before and after exercise and functional near-infrared spectroscopy was used to monitor prefrontal cerebral blood flow changes during the tasks. The results indicated significant differences between the two groups regarding executive function. Participants with lower aerobic fitness performed better than their higher fitness counterparts in inhibitory control and working memory, but not in cognitive flexibility. This finding suggests that the aerobic fitness may moderate the extent of cognitive benefits gained from acute aerobic exercise. Furthermore, the neuroimaging data indicated negative activation in the frontopolar area and dorsolateral prefrontal cortex in response to three complex tasks. These findings underscore the importance of considering individual aerobic fitness when assessing the cognitive benefits of exercise and could have significant implications for tailoring fitness programs to enhance cognitive performance.
Asunto(s)
Función Ejecutiva , Ejercicio Físico , Humanos , Memoria a Corto Plazo , Circulación Cerebrovascular , Corteza Prefontal DorsolateralRESUMEN
Triglyceride-rich lipoproteins cholesterol (TRLs-C) has been associated with atherosclerotic cardiovascular disease (ASCVD), even among individuals with low-density lipoprotein cholesterol in the targeted range. We assessed the associations of TRLs-C with myocardial infarction (MI) and ischemic stroke (IS) and compared the associations with those for other traditional lipids (i.e., triglycerides and non-high-density lipoprotein cholesterol [non-HDL-C]). Included were 327,899 participants from the UK Biobank who were free of MI or IS and did not receive lipid-lowering treatment at baseline. Ten-year risk for ASCVD was estimated by the Pooled Cohort Equations and was grouped as low (<7.5%), intermediate (7.5% to <20%), and high risk (≥20%). Multivariable Cox regression models were used to examine the associations of TRLs-C, triglycerides, and non-HDL-C with risk of MI and IS, overall and by the 10-years risk categories. During a median of 12.3 years of follow-up, 8,358 incident MI and 4,400 incident IS cases were identified. After multivariable adjustment, higher TRLs-C was associated with a higher risk of MI (p-trend <0.0001) but not IS (p-trend = 0.074), with similar associations for triglycerides and non-HDL-C. There were interactions between TRLs-C and 10-years ASCVD risk on risk of MI (p-interaction <0.0001) and IS (p-interaction = 0.0003). Hazard ratios (95% CIs) of MI comparing the highest with the lowest quartiles of TRLs-C were 2.10 (1.23-1.30) in the low-risk group, 1.52 (1.38-1.69) in the intermediate-risk group, and 1.22 (1.03-1.45) in the high-risk group. The corresponding estimates for IS were 1.24 (1.05-1.45), 0.94 (0.83-1.07), and 0.83 (0.67-1.04), respectively. Similar interactions with the 10-years ASCVD risk were observed for triglycerides and non-HDL-C on risk of MI and for triglycerides on risk of IS. Elevated levels of TRLs-C (or triglycerides or non-HDL-C) are associated with a higher risk of developing MI and IS (except non-HDL-C) predominantly among individuals who are typically classified as being low-risk. These findings may have implications for more detailed risk stratification and early intervention.
RESUMEN
PURPOSE: The significance of postmastectomy radiotherapy (PMRT) in breast cancer patients who initially have clinically node-positive (cN +) status but achieve downstaging to ypN0 following neoadjuvant chemotherapy (NAC) remains uncertain. This study aims to assess the impact of PMRT in this patient subset. METHODS: Patients were enrolled from West China Hospital, Sichuan University from 2008 to 2019. Overall survival (OS), Locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), and breast cancer-specific survival (BCSS) were estimated using the Kaplan-Meier method and assessed with the log-rank test. The impact of PMRT was further analyzed by the Cox proportional hazards model. Propensity score matching (PSM) was performed to reduce the selection bias. RESULTS: Of the 333 eligible patients, 189 (56.8%) received PMRT, and 144 (43.2%) did not. At a median follow-up period of 71 months, the five-year LRFS, DMFS, BCSS, and OS rates were 99.1%, 93.4%, 96.4%, and 94.3% for the entire cohort, respectively. Additionally, the 5-year LRFS, DMFS, BCSS, and OS rates were 98.9%, 93.8%, 96.7%, and 94.5% with PMRT and 99.2%, 91.3%, 94.9%, and 92.0% without PMRT, respectively (all p-values not statistically significant). After multivariate analysis, PMRT was not a significant risk factor for any of the endpoints. When further stratified by stage, PMRT did not show any survival benefit for patients with stage II-III diseases. CONCLUSION: In the context of comprehensive treatments, PMRT might be exempted in ypN0 breast cancer patients. Further large-scale, randomized controlled studies are required to investigate the significance of PMRT in this patient subset.
Asunto(s)
Neoplasias de la Mama , Mastectomía , Terapia Neoadyuvante , Estadificación de Neoplasias , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Adulto , Anciano , Estudios Retrospectivos , Radioterapia Adyuvante/métodos , Quimioterapia Adyuvante/métodos , Metástasis Linfática , Recurrencia Local de Neoplasia/patologíaRESUMEN
Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism. SIGNIFICANCE STATEMENT: This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations.
Asunto(s)
Factor Nuclear 4 del Hepatocito , ARN Largo no Codificante , Humanos , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hepatopatías/genética , Hepatopatías/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Células Hep G2RESUMEN
Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.
Asunto(s)
Trastorno del Espectro Autista , Humanos , Espectroscopía de Protones por Resonancia Magnética/métodos , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Ácido Glutámico , Ácido Aspártico , Colina , Ácido gamma-AminobutíricoRESUMEN
A Cu/Pd-cocatalyzed 1,5-boroacylation of cyclopropyl-substituted ACPs with B2pin2 and acid chlorides has been developed. Using cyclopropyl-substituted ACPs as the starting material, a broad range of 1,5-boroacylated products with multiple functional groups was prepared in good yields with excellent regio- and stereoselectively. Both aromatic and aliphatic acid chlorides were tolerated in this reaction.
RESUMEN
BACKGROUND: Accurate molecular and clinical stratification of patients with central nervous system (CNS) non-germinomatous germ cell tumors (NGGCTs) remains challenging, impeding the development of personalized therapeutic approaches. Herein, we investigated the translational significance of cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA) in pediatric NGGCTs to identify characteristic features of CNS NGGCTs and to identify a subset of patients for whom the presence of residual disease is a risk factor and an indicator of shorter progression-free survival (PFS) and overall survival (OS). METHODS: Medical records of patients with CNS NGGCTs between January 1, 2018 and December 31, 2022 were reviewed retrospectively. RESULTS: The cohort consisted of 11 male and six female patients. Tumor markers were elevated in four of the five people who underwent surgery. The remaining 12 patients were diagnosed with malignant NGGCTs according to elevated tumor markers. Among them, ctDNA before chemotherapy as well as ctDNA clearance were consistently associated with PFS and OS (p < .05). By setting a ctDNA positivity threshold of 6%, patients with high ctDNA (above the threshold) levels, which had limitation due to the selection based on optimal statistic from the survival analysis, had significantly inferior 5-year PFS and OS compared to those with low levels (below the threshold). ctDNA or ctDNA clearance combined with the presence of residual disease predicted significantly worse OS and PFS (p < .05). CONCLUSIONS: CSF ctDNA might allow the study of genomic evolution and the characterization of tumors in pediatric NGGCTs. CSF ctDNA analysis may facilitate the clinical management of pediatric NGGCT patients, and aid in designing personalized therapeutic strategies.
Asunto(s)
Biomarcadores de Tumor , Neoplasias del Sistema Nervioso Central , ADN Tumoral Circulante , Neoplasias de Células Germinales y Embrionarias , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias/líquido cefalorraquídeo , Neoplasias de Células Germinales y Embrionarias/sangre , Neoplasias de Células Germinales y Embrionarias/mortalidad , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Femenino , ADN Tumoral Circulante/líquido cefalorraquídeo , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Niño , Estudios Retrospectivos , Adolescente , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Preescolar , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/sangre , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Pronóstico , Tasa de Supervivencia , Estudios de Seguimiento , Lactante , Neoplasia Residual/líquido cefalorraquídeo , Neoplasias TesticularesRESUMEN
Toll-like receptors (TLRs) are one of the extensively studied pattern recognition receptors (PRRs) and play crucial roles in the immune responses of vertebrates and invertebrates. In this study, 14 TLR genes were identified from the genome-wide data of Octopus sinensis. Protein structural domain analysis showed that most TLR proteins had three main structural domains: extracellular leucine-rich repeats (LRR), transmembrane structural domains, and intracellular Toll/IL-1 receptor domain (TIR). The results of subcellular localization prediction showed that the TLRs of O. sinensis were mainly located on the plasma membrane. The results of quantitative real-time PCR (qPCR) showed that the detected TLR genes were differentially expressed in the hemolymph, white bodies, hepatopancreas, gills, gill heart, intestine, kidney, and salivary gland of O. sinensis. Furthermore, the present study investigated the expression changes of O. sinensis TLR genes in hemolymph, white bodies, gills, and hepatopancreas in different phases (6 h, 12 h, 24 h, 48 h) after stimulation with PGN, poly(I: C) and Vibrio parahaemolyticus. The expression of most of the TLR genes was upregulated at different time points after infection with pathogens or stimulation with PAMPs, a few genes were unchanged or even down-regulated, and many of the TLR genes were much higher after V. parahaemolyticus infection than after PGN and poly(I:C) stimulation. The results of this study contribute to a better understanding of the molecular immune mechanisms of O. sinensis TLRs genes in resistance to pathogen stimulation.
Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata , Octopodiformes , Receptores Toll-Like , Vibrio parahaemolyticus , Animales , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/química , Vibrio parahaemolyticus/fisiología , Octopodiformes/genética , Octopodiformes/inmunología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Filogenia , Perfilación de la Expresión Génica/veterinaria , Poli I-C/farmacología , Peptidoglicano/farmacología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Moléculas de Patrón Molecular Asociado a Patógenos/farmacologíaRESUMEN
Volatile sulfur compounds, such as dimethyl sulfide (DMS), carbonyl sulfide (OCS), and carbon disulfide (CS2), have significant implications for both atmospheric chemistry and climate change. Despite the crucial role of oceans in regulating their atmospheric budgets, our comprehension of their cycles in seawater remains insufficient. To address this gap, a field investigation was conducted in the western North Pacific to clarify the sources, sinks, and biogeochemical controls of these gases in two different marine environments, including relatively eutrophic Kuroshio-Oyashio extension (KOE) and oligotrophic North Pacific subtropical gyre. Our findings revealed higher concentrations of these gases in both seawater and the atmosphere in the KOE compared to the subtropical gyre. In the KOE, nutrient-rich upwelling stimulated rapid DMS biological production, while reduced seawater temperatures hindered the removal of OCS and CS2, leading to their accumulation. Furthermore, we have quantitatively evaluated the relative contribution of each pathway to the source and sink of DMS, OCS, and CS2 within the mixed layer and identified vertical exchange as a potential sink in most cases, transporting substantial amounts of these gases from the mixed layer to deeper waters. This research advances our understanding of sulfur gas source-sink dynamics in seawater, contributing to the assessment of their marine emissions and atmospheric budgets.
RESUMEN
BACKGROUND Arthroscopic knee surgery (AKS) is minimally invasive, reducing hospital stay compared to traditional surgery, but postoperative pain remains a significant issue. This study compared the analgesic and functional outcomes following AKS following anesthesia using adductor canal block (ACB) with and without anesthesia using the interspace between the popliteal artery and posterior capsule of the knee (IPACK) block under spinal anesthesia (SA). MATERIAL AND METHODS We randomly allocated 120 patients into 3 groups: IPACK+ACB+SA for Group A (n=40), ACB+SA for Group B (n=40), and SA for Group C (n=40). The outcome was the visual analog scale (VAS) score evaluated at rest and during activity at 3 h, 6 h, 12 h, 24 h, and 48 h postoperatively, the frequency of administration of postoperative rescue analgesic, and the maximal walking distance at 24 h and 48 h postoperatively. RESULTS Compared with Group C, the VAS scores in Group A were significantly lower at 48 h postoperatively (P<0.05). There was a significant difference in the frequency of postoperative rescue analgesia use among the 3 groups (P=0.001). In a subgroup analysis of meniscus shaping under arthroscopy, the resting VAS score in Group A was lower than that in Group B and Group C at 48 h postoperatively (P<0.05). The maximum walking distance of Group A was longer than that of Group B and Group C at 24 h and 48 h postoperatively (P<0.01). CONCLUSIONS The effect of postoperative analgesia in the group receiving IPACK combined with ACB after AKS was obviously superior. In arthroscopic meniscus repair surgery, the duration of analgesia was longer, and the maximum walking distance at 48 h postoperatively was longer.
Asunto(s)
Artroscopía , Articulación de la Rodilla , Bloqueo Nervioso , Manejo del Dolor , Dimensión del Dolor , Dolor Postoperatorio , Humanos , Dolor Postoperatorio/tratamiento farmacológico , Artroscopía/métodos , Artroscopía/efectos adversos , Femenino , Masculino , Bloqueo Nervioso/métodos , Persona de Mediana Edad , Adulto , Manejo del Dolor/métodos , Articulación de la Rodilla/cirugía , Dimensión del Dolor/métodos , Resultado del TratamientoRESUMEN
The objective of this study was to investigate the risk factors associated with surgical site infection (SSI) after percutaneous endoscopic lumbar discectomy (PELD) in patients with lumbar disc herniation (LDH). A retrospective analysis was performed on a cohort of 335 patients who underwent PELD between January 2016 and January 2023. Data were derived from the Hospital Information System (HIS), and a comprehensive statistical assessment was performed using IBM SPSS Statistics version 25.0. Both univariate and multivariate logistic regression analyses assessed a range of risk determinants, such as age, body mass index (BMI), comorbidities, laboratory test parameters and surgery-related variables. The incidence of SSI after PELD was 2.7% (9/335). Univariate analysis highlighted BMI, diabetes mellitus, long-term corticosteroid consumption, surgical time and cerebrospinal fluid leakage as significant predictors of SSI. Multivariate logistic regression identified BMI, diabetes mellitus, long-term corticosteroid consumption, surgical time and cerebrospinal fluid leakage as significant risk factors for SSI after PELD. High BMI, diabetes mellitus, long-term corticosteroid consumption, long surgical time and postoperative cerebrospinal fluid leakage are predisposing factors for SSI in patients undergoing PELD. Precise interventions focused on such risk components, including careful preoperative assessment and strategic postoperative care, are essential to reduce the incidence of SSI and improve surgical efficacy.
Asunto(s)
Diabetes Mellitus , Discectomía Percutánea , Desplazamiento del Disco Intervertebral , Humanos , Estudios Retrospectivos , Desplazamiento del Disco Intervertebral/epidemiología , Desplazamiento del Disco Intervertebral/etiología , Desplazamiento del Disco Intervertebral/cirugía , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/etiología , Infección de la Herida Quirúrgica/cirugía , Discectomía Percutánea/efectos adversos , Vértebras Lumbares/cirugía , Factores de Riesgo , Corticoesteroides , Pérdida de Líquido Cefalorraquídeo/etiología , Pérdida de Líquido Cefalorraquídeo/cirugía , Resultado del TratamientoRESUMEN
NOD-like receptor (NLR) family CARD domain containing 3 (NLRC3), an intracellular member of NLR family, is a negative regulator of inflammatory signaling pathways in innate and adaptive immune cells. Previous reports have shown that NLRC3 is expressed in dendritic cells (DCs). However, the role of NLRC3 in DC activation and immunogenicity is unclear. In the present study, we find that NLRC3 attenuates the antigen-presenting function of DCs and their ability to activate and polarize CD4+ T cells into Th1 and Th17 subsets. Loss of NLRC3 promotes pathogenic Th1 and Th17 responses and enhanced experimental autoimmune encephalomyelitis (EAE) development. NLRC3 negatively regulates the antigen-presenting function of DCs via p38 signaling pathway. Vaccination with NLRC3-overexpressed DCs reduces EAE progression. Our findings support that NLRC3 serves as a potential target for treating adaptive immune responses driving multiple sclerosis and other autoimmune disorders.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Presentación de Antígeno , Autoinmunidad , Linfocitos T CD4-Positivos/trasplante , Polaridad Celular , Células Cultivadas , Células Dendríticas/citología , Encefalomielitis Autoinmune Experimental/terapia , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Transducción de Señal , Células TH1/citología , Células TH1/metabolismo , Células Th17/citología , Células Th17/metabolismo , VacunaciónRESUMEN
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , MicroARNs , Recién Nacido , Humanos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Epigénesis Genética/genética , MicroARNs/genética , MicroARNs/metabolismo , Inactivación Metabólica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genéticaRESUMEN
We propose a scheme to realize a novel, to the best of our knowledge, scenario that the single-photon transport in a one-dimensional waveguide can be affected by the temperature. The scheme is composed by a waveguide-atom interacting structure linked to a thermal bath. The single-photon reflection (or transmission) coefficient can be controlled by adjusting the temperature of the thermal bath. This provides a thermal control of the single-photon transport. Moreover, the scheme provides an approach for implementing the optical thermometer, in which the temperature of the thermal bath is estimated by measuring the photonic transport. The thermometer can accurately measure the temperature in the low-temperature region.
RESUMEN
We investigate the heat conduction between two one-dimensional waveguides intermediated by a laser-driving atom. The laser provides the optical control of the heat conduction. The tunable asymmetric conduction of the heat against the temperature gradient is realized. Assisted by the modulated laser, the heat conduction from either waveguide to the other waveguide can be suppressed. The heat currents can be significantly amplified by the energy flow of the laser.
RESUMEN
OBJECTIVE: A neural network method was employed to establish a dose prediction model for organs at risk (OAR) in patients with cervical cancer receiving brachytherapy using needle insertion. METHODS: A total of 218 CT-based needle-insertion brachytherapy fraction plans for loco-regionally advanced cervical cancer treatment were analyzed in 59 patients. The sub-organ of OAR was automatically generated by self-written MATLAB, and the volume of the sub-organ was read. Correlations between D2cm3 of each OAR and volume of each sub-organ-as well as high-risk clinical target volume for bladder, rectum, and sigmoid colon-were analyzed. We then established a neural network predictive model of D2cm3 of OAR using the matrix laboratory neural net. Of these plans, 70% were selected as the training set, 15% as the validation set, and 15% as the test set. The regression R value and mean squared error were subsequently used to evaluate the predictive model. RESULTS: The D2cm3/D90 of each OAR was related to volume of each respective sub-organ. The R values for bladder, rectum, and sigmoid colon in the training set for the predictive model were 0.80513, 0.93421, and 0.95978, respectively. The ∆D2cm3/D90 for bladder, rectum, and sigmoid colon in all sets was 0.052 ± 0.044, 0.040 ± 0.032, and 0.041 ± 0.037, respectively. The MSE for bladder, rectum, and sigmoid colon in the training set for the predictive model was 4.779 × 10-3, 1.967 × 10-3 and 1.574 × 10-3, respectively. CONCLUSION: The neural network method based on a dose-prediction model of OAR in brachytherapy using needle insertion was simple and reliable. In addition, it only addressed volumes of sub-organs to predict the dose of OAR, which we believe is worthy of further promotion and application.
Asunto(s)
Braquiterapia , Neoplasias del Cuello Uterino , Femenino , Humanos , Braquiterapia/efectos adversos , Braquiterapia/métodos , Órganos en Riesgo , Dosificación Radioterapéutica , Neoplasias del Cuello Uterino/radioterapia , Neoplasias del Cuello Uterino/etiología , Recto , Redes Neurales de la Computación , Planificación de la Radioterapia Asistida por Computador/métodosRESUMEN
The liver is an immune organ that plays a vital role in the detection, capture, and clearance of pathogens and foreign antigens that invade the human body. During acute and chronic infections, the liver transforms from a tolerant to an active immune state. The defence mechanism of the liver mainly depends on a complicated network of intrahepatic and translocated immune cells and non-immune cells. Therefore, a comprehensive liver cell atlas in both healthy and diseased states is needed for new therapeutic target development and disease intervention improvement. With the development of high-throughput single-cell technology, we can now decipher heterogeneity, differentiation, and intercellular communication at the single-cell level in sophisticated organs and complicated diseases. In this concise review, we aimed to summarise the advancement of emerging high-throughput single-cell technologies and re-define our understanding of liver function towards infections, including hepatitis B virus, hepatitis C virus, Plasmodium, schistosomiasis, endotoxemia, and corona virus disease 2019 (COVID-19). We also unravel previously unknown pathogenic pathways and disease mechanisms for the development of new therapeutic targets. As high-throughput single-cell technologies mature, their integration into spatial transcriptomics, multiomics, and clinical data analysis will aid in patient stratification and in developing effective treatment plans for patients with or without liver injury due to infectious diseases.