RESUMEN
Plastids and mitochondria are 2 intracellular organelles containing DNA-encoding partial but essential components for their roles, photosynthesis, and respiration. Precise base editing in both plastid and mitochondrial genomes would benefit their gene functional analysis and crop breeding. Targeted base editing in organellar genomes relies on a protein-based genome-editing system that uses the TALE-DNA recognition motif with deaminases. This is because the efficient delivery of guide RNA for clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems into organelles is currently impossible. Since TALE-based base editors used in organellar genomes are usually dimeric types, in this study, we used targeted A-to-G base editing in Arabidopsis (Arabidopsis thaliana) plastid and mitochondrial genomes with monomeric TALE-based deaminase for easier assembling of vectors. As a result, inheritable targeted A-to-G base editing of adenosine triphosphatase subunit 6-2 (atp6-2) in plant mitochondrial genomes and of 16S ribosomal RNA (16S rRNA) in plastid genomes of Arabidopsis was successfully induced by monomeric TALE-based adenine deaminase (AD) without off-target mutations. The monomeric TALE-based adenine deaminases also demonstrated a preference for editing the 8th T on the same strand from the recognition end. Phenotypic analysis showed that A-to-G conversion at 1139A of plastid 16S rRNA conferred substantial spectinomycin resistance in Arabidopsis, but not the other 2 potential-resistant mutations at 1131T and 1137T, predicted from the previous bacterial data. Our study demonstrated the feasibility of monomeric TALE-based ADs in plant organelles and their potential contribution to the functional analyses of plant organelles with easier assembling.
Asunto(s)
Arabidopsis , Edición Génica , Arabidopsis/genética , ARN Ribosómico 16S , ARN Guía de Sistemas CRISPR-Cas , Fitomejoramiento , Plastidios , Plantas/genética , ADN , Sistemas CRISPR-CasRESUMEN
Beyond their well-known role in respiration, mitochondria of land plants contain biologically essential and/or agriculturally important genes whose function and regulation are not fully understood. Until recently, it has been difficult to analyze these genes or, in the case of crops, to improve their functions, due to a lack of methods for stably modifying plant mitochondrial genomes. In rice, rapeseed, and Arabidopsis thaliana, mitochondria-targeting transcription activator-like effector nucleases (mitoTALENs) have recently been used to disrupt targeted genes in an inheritable and stable manner. However, this technique can also induce large deletions around the targeted sites, as well as cause ectopic homologous recombinations, which can change the sequences and gene order of mitochondrial genomes. Here, we used mitochondria-targeting TALEN-based cytidine deaminase to successfully substitute targeted C:G pairs with T:A pairs in the mitochondrial genomes of plantlets of A. thaliana without causing deletions or changes in genome structure. Expression vectors of the base editor genes were stably introduced into the nuclear genome by the easy-to-use floral dipping method. Some T1 plants had apparent homoplasmic substitutions that were stably inherited by seed progenies, independently of the inheritance of nuclear-introduced genes. As a demonstration of the method, we used it to restore the growth of an organelle transcript processing 87 (otp87) mutant that is defective in the editing of RNA transcripts of the mitochondrial atp1 gene and to identify bases in atp1 that affect the efficiency of RNA editing by OTP87.
Asunto(s)
Arabidopsis , Edición Génica , Marcación de Gen , Genoma Mitocondrial , Genoma de Planta , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Arabidopsis/genética , Proteínas de Arabidopsis , Emparejamiento Base , Edición Génica/métodos , Marcación de Gen/métodos , Genoma Mitocondrial/genética , Genoma de Planta/genética , Mitocondrias/genética , ATPasas de Translocación de Protón/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genéticaRESUMEN
BACKGROUND: In 2016, China has implemented the World Health Organization's "treat all" policy. We aimed to assess the impact of significant improvements in the 95-95-95 targets on population-level human immunodeficiency virus (HIV) transmission dynamics and incidence. METHODS: We focused on 3 steps of the HIV care continuum: diagnosed, on antiretroviral therapy, and achieving viral suppression. The molecular transmission clusters were inferred using HIV-TRACE. New HIV infections were estimated using the incidence method in the European Centre for Disease Prevention and Control HIV Modelling Tool. RESULTS: Between 2004 and 2023, the national HIV epidemiology database recorded 2.99 billion person-times of HIV tests and identified 1 976 878 new diagnoses. We noted a roughly "inverted-V" curve in the clustering frequency, with the peak recorded in 2014 (67.1% [95% confidence interval, 63.7%-70.5%]), concurrent with a significant improvement in the 95-95-95 targets from 10-13-<71 in 2005 to 84-93-97 in 2022. Furthermore, we observed a parabolic curve for a new infection with the vertex occurring in 2010. CONCLUSIONS: In general, it was suggested that the improvements in the 95-95-95 targets were accompanied by a reduction in both the population-level HIV transmission rate and incidence. Thus, China should allocate more effort to the first "95" target to achieve a balanced 95-95-95 target.
RESUMEN
BACKGROUND: National treatment guidelines of China evolving necessitates population-level surveillance of transmitted drug resistance (TDR) to inform or update HIV treatment strategies. METHODS: We analyzed the demographic, clinical, and virologic data obtained from people with HIV (PWH) residing in 31 provinces of China who were newly diagnosed between 2018 and 2023. Evidence of TDR was defined by the World Health Organization list for surveillance of drug resistance mutations. RESULTS: Among the 22 124 PWH with protease and reverse transcriptase sequences, 965 (4.36%; 95% CI, 4.1-4.63) had at least 1 TDR mutation. The most frequent TDR mutations were nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.39%; 95% CI, 2.19%-2.59%), followed by nucleoside reverse transcriptase inhibitor mutations(1.35%; 95% CI, 1.2%-1.5%) and protease inhibitor mutations (1.12%; 95% CI, .98%-1.26%). The overall protease and reverse transcriptase TDR increased significantly from 4.05% (95% CI, 3.61%-4.52%) in 2018 to 5.39% (95% CI, 4.33%-6.57%) in 2023. A low level of integrase strand transfer inhibitor TDR was detected in 9 (0.21%; 95% CI, .1%-.38%) of 4205 PWH. CONCLUSIONS: Presently, the continued use of NNRTI-based first-line antiretroviral therapy regimen for HIV treatment has been justified.
RESUMEN
As the most promising hydrogen evolution reaction (HER) electrocatalysts, platinum (Pt)-based catalysts still struggle with sluggish kinetics and expensive costs in alkaline media. Herein, we accelerate the alkaline hydrogen evolution kinetics by optimizing the local environment of Pt species and metal oxide heterointerfaces. The well-dispersed PtRu bimetallic clusters with adjacent MO2-x (M = Sn and Ce) on carbon nanotubes (PtRu/CNT@MO2-x) are demonstrated to be a potential electrocatalyst for alkaline HER, exhibiting an overpotential of only 75 mV at 100 mA cm-2 in 1 M KOH. The excellent mass activity of 12.3 mA µg-1Pt+Ru and specific activity of 32.0 mA cm-2ECSA at an overpotential of 70 mV are 56 and 64 times higher than those of commercial Pt/C. Experimental and theoretical investigations reveal that the heterointerfaces between Pt clusters and MO2-x can simultaneously promote H2O adsorption and activation, while the modification with Ru further optimizes H adsorption and H2O dissociation energy barriers. Then, the matching kinetics between the accelerated elementary steps achieved superb hydrogen generation in alkaline media. This work provides new insight into catalytic local environment design to simultaneously optimize the elementary steps for obtaining ideal alkaline HER performance.
RESUMEN
A mounting body of evidences suggests that patients with chronic heart failure (HF) frequently experience cognitive impairments, but the neuroanatomical mechanism underlying these impairments remains elusive. In this retrospective study, 49 chronic HF patients and 49 healthy controls (HCs) underwent brain structural MRI scans and cognitive assessments. Cortical morphology index (cortical thickness, complexity, sulcal depth and gyrification) were evaluated. Correlations between cortical morphology and cognitive scores and clinical variables were explored. Logistic regression analysis was employed to identify risk factors for predicting 3-year major adverse cardiovascular events. Compared with HCs, patients with chronic HF exhibited decreased cognitive scores (p < .001) and decreased cortical thickness, sulcal depth and gyrification in brain regions involved cognition, sensorimotor, autonomic nervous system (family-wise error correction, all p values <.05). Notably, HF duration and New York Heart Association (NYHA) demonstrated negative correlations with abnormal cortex morphology, particularly HF duration and thickness in left precentral gyrus (r = -.387, p = .006). Cortical morphology characteristics exhibited positive associations with global cognition, particularly cortical thickness in left pars opercularis (r = .476, p < .001). NYHA class is an independent risk factor for adverse outcome (p = .001). The observed correlation between abnormal cortical morphology and global cognition suggested that cortical morphology may serve as a promising imaging biomarker and provide insights into neuroanatomical underpinnings of cognitive impairment in patients with chronic HF.
Asunto(s)
Corteza Cerebral , Disfunción Cognitiva , Insuficiencia Cardíaca , Imagen por Resonancia Magnética , Humanos , Masculino , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/patología , Femenino , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Anciano , Estudios Retrospectivos , Enfermedad CrónicaRESUMEN
Background Coronary CT-derived fractional flow reserve (CT-FFR) has been used in patients with suspected coronary artery disease (CAD); however, whether it decreases invasive coronary angiography (ICA) use and affects prognosis remains insufficiently evidenced. Purpose To explore the effectiveness of adding CT-FFR to routine coronary CT angiography (CCTA) on short-term ICA rate and major adverse cardiovascular events (MACE) in a Chinese setting. Materials and Methods A multicenter randomized controlled trial was conducted in 17 Chinese centers, with patient inclusion from May 2021 to September 2021. Eligible individuals with 25%-99% stenosis at CCTA were randomly assigned 1:1 to a strategy of CCTA plus automated CT-FFR or CCTA alone for guiding downstream care. The primary end point was the ICA rate 90 days after enrollment. Secondary end points included 90-day and 1-year MACE rates (comprised of all-cause mortality, nonfatal myocardial infarction, and urgent revascularization) and 1-year cardiac events (comprised of cardiac death, nonfatal myocardial infarction, and urgent revascularization). The Cox proportional hazards model with center effect adjustment was used for survival comparisons. Results A total of 5297 participants (mean age, 63.5 years ± 10.8 [SD]; 3178 male) were included. During the 90-day follow-up, ICA was performed in 263 of 2633 participants (10.0%) in the CCTA plus CT-FFR group and 327 of 2640 participants (12.4%) in the CCTA-alone group (absolute rate difference: -2.40%; 95% CI: -4.10, -0.70; P = .006). The MACE rates at 90 days (0.5% [12 of 2633 participants] vs 0.8% [21 of 2640 participants]; P = .12) and 1 year (2.9% [74 of 2546 participants] vs 2.8% [72 of 2531 participants]; P = .90) were similar for both groups. At 1-year follow-up, fewer cardiac events were observed in the CCTA plus CT-FFR group compared with the CCTA-alone group (0.5% vs 1.1%; adjusted hazard ratio: 0.52; 95% CI: 0.27, 0.99; P = .047). Conclusion CT-FFR added to CCTA led to a lower 90-day ICA rate and similar 1-year MACE rate in a Chinese real-world setting. Further follow-up is warranted to demonstrate the long-term prognostic value of this management approach. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Pundziute-do Prado in this issue.
Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Masculino , Reserva del Flujo Fraccional Miocárdico/fisiología , Femenino , Persona de Mediana Edad , Angiografía por Tomografía Computarizada/métodos , China , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Anciano , Pueblos del Este de AsiaRESUMEN
Lead-free antiferroelectrics with excellent energy storage performance can become the core components of the next-generation advanced pulse power capacitors. However, the low energy storage efficiency caused by the hysteresis of antiferroelectric-ferroelectric transition largely limits their development toward miniaturization, lightweight, and integration. In this work, an ultrahigh recoverable energy storage density of ≈11.4 J cm-3 with a high efficiency of ≈80% can be realized in La-modified Ag0.5 Na0.5 NbO3 antiferroelectric ceramics at an ultrahigh breakdown electric field of ≈67 kV mm-1 by the compromise optimization between antiferroelectricity enhancement and nanodomain engineering, resulting in the transformation of large-size ferrielectric antipolar stripe domains into ultrasmall antiferroelectric nanodomains or polarization nanoregions revealing as Moiré fringe structures. In addition, the enhanced transparency with increasing La content can also be clearly observed. This work not only develops new lead-free antiferroelectric energy storage materials with high application potential but also demonstrates that the strategy of compromise optimization between antiferroelectricity modulation and nanodomain engineering is an effective avenue to enhance the energy storage performance of antiferroelectrics.
RESUMEN
Much effort is made to achieve the negative thermal expansion (NTE) control, but rare methods reached the improvement of intrinsic NTE. In the present work, a significantly enhanced NTE is realized in Cu2P2O7 by applying low pressure. Especially, the volumetric coefficient of thermal expansion (CTE) of Cu2P2O7 reached to -50.0 × 10-6 K-1 (150-325K) under 0.25 GPa, which is increased by 47.5% compared to its NTE in a similar temperature range under atmosphere pressure. This character enables a more effective manifestation of the thermal compensation role of Cu2P2O7 in composites. The enhanced NTE mechanisms are analyzed by high pressure synchrotron X-ray diffraction, neutron diffraction at variable temperature and pressure, as well as density functional theory (DFT) calculations. The results show that applied pressure accelerates the contraction of the distance between adjacent CuO layers and CuO columns. Meanwhile, the low-frequency phonon contribution to NTE in α-Cu2P2O7 is improved. This work is meaningful for the exploration of methods to enhance NTE and the practical application of NTE materials.
RESUMEN
Ghost imaging (GI) has been widely used in the applications including spectral imaging, 3D imaging, and other fields due to its advantages of broad spectrum and anti-interference. Nevertheless, the restricted sampling efficiency of ghost imaging has impeded its extensive application. In this work, we propose a novel foveated pattern affine transformer method based on deep learning for efficient GI. This method enables adaptive selection of the region of interest (ROI) by combining the proposed retina affine transformer (RAT) network with minimal computational and parametric quantities with the foveated speckle pattern. For single-target and multi-target scenarios, we propose RAT and RNN-RAT (recurrent neural network), respectively. The RAT network enables an adaptive alteration of the fovea of the variable foveated patterns spot to different sizes and positions of the target by predicting the affine matrix with a minor number of parameters for efficient GI. In addition, we integrate a recurrent neural network into the proposed RAT to form an RNN-RAT model, which is capable of performing multi-target ROI detection. Simulations and experimental results show that the method can achieve ROI localization and pattern generation in 0.358â ms, which is a 1 × 105 efficiency improvement compared with the previous methods and improving the image quality of ROI by more than 4â dB. This approach not only improves its overall applicability but also enhances the reconstruction quality of ROI. This creates additional opportunities for real-time GI.
RESUMEN
Citrus yellow vein-clearing virus (CYVCV) is an increasing threat to citrus cultivation. Notably, the role of zinc finger proteins (ZFPs) in mediating viral resistance in citrus plants is unclear. In this study, we demonstrate that ZFPs ClSUP and ClDOF3.4 enhance citrus defense responses against CYVCV in Eureka lemon. ClSUP interacted with the coat protein (CP) of CYVCV to reduce CP accumulation and inhibit its silencing suppressor function. Overexpression of CISUP triggered reactive oxygen species (ROS) and salicylic acid (SA) pathways, and enhanced resistance to CYVCV infection. In contrast, ClSUP-silencing resulted in increased CP accumulation and down-regulated ROS and SA-related genes. ClDOF3.4 interacts with ClSUP to facilitate its interactions with CP. Furthermore, ClDOF3.4 synergistically regulated the accumulation of ROS and SA with ClSUP and accelerated the down-regulation of CP accumulation. Transgenic plants co-expressing ClSUP and ClDOF3.4 remarkedly decrease the CYVCV. These findings provide a new reference for understanding the interaction mechanism between the host and CYVCV.
RESUMEN
Computational ghost imaging (CGI) allows two-dimensional (2D) imaging by using spatial light modulators and bucket detectors. However, most CGI methods attempt to obtain 2D images through measurements with a single sampling ratio. Here, we propose a CGI method enhanced by degradation models for under-sampling, which can be reflected by results from measurements with different sampling ratios. We utilize results from low-sampling-ratio measurements and normal-sampling-ratio measurements to train the neural network for the degradation model, which is fitted through self-supervised learning. We obtain final results by importing normal-sampling-ratio results into the neural network with optimal parameters. We experimentally demonstrate improved results from the CGI method using degradation models for under-sampling. Our proposed method would promote the development of CGI in many applications.
RESUMEN
Single-pixel imaging (SPI) using a single-pixel detector is an unconventional imaging method that has great application prospects in many fields to realize high-performance imaging. In particular, the recently proposed catadioptric panoramic ghost imaging (CPGI) extends the application potential of SPI to high-performance imaging at a wide field of view (FOV) with recent growing demands. However, the resolution of CPGI is limited by the hardware parameters of the digital micromirror device (DMD), which cannot meet ultrahigh-resolution panoramic imaging needs that require detailed information. Therefore, to overcome the resolution limitation of CPGI, we propose a panoramic SPI based on rotational subdivision (RSPSI). The key of RSPSI is to obtain the entire panoramic scene by the rotation-scanning of a rotating mirror tilted 45°, so that one single pattern that only covers one sub-FOV with a small FOV can complete an uninterrupted modulation on the entire panoramic FOV during a once-through pattern projection. Then, based on temporal resolution subdivision, the image sequence of sub-FOVs subdivided from the entire panoramic FOV can be reconstructed with pixel-level or even subpixel-level horizontal shifting adjacently. Experimental results using a proof-of-concept setup show that the panoramic image can be obtained with 10428 × 543 of 5,662,404 pixels, which is more than 9.6 times higher than the resolution limit of the CPGI using the same DMD. To the best of our knowledge, the proposed RSPSI is the first to achieve a megapixel resolution via SPI, which can provide potential applications in fields requiring imaging with ultrahigh-resolution and wide FOV.
RESUMEN
As a member of Ubiquitin-specific protease subfamily, ubiquitin specific protease 7 (USP7) has been reported to participate in a variety of cellular processes, including cell cycle, apoptosis, DNA damage response, and epigenetic modification. However, its function in preimplantation embryos is still obscure. To investigate the functions of USP7 during preimplantation embryo development, we used siRNA to degrade endogenous USP7 messenger RNA. We found that USP7 knockdown significantly decreased the development rate of mouse early embryos. Moreover, depletion of USP7 induced the accumulation of the DNA lesions and apoptotic blastomeres in early embryos. In addition, USP7 knockdown caused an abnormal H3K27me3 modification in 2-cell embryos. Overall, our results indicate that USP7 maintains genome stability perhaps via regulating H3K27me3 and DNA damage, consequently controlling the embryo quality.
Asunto(s)
Histonas , Ubiquitina Tiolesterasa , Animales , Ratones , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Histonas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Daño del ADN/genética , Proteasas Ubiquitina-Específicas/genéticaRESUMEN
OBJECTIVE: This study aimed to assess alterations in right ventricular (RV) function following percutaneous coronary intervention (PCI) in patients with chronic coronary syndromes utilizing three-dimensional speckle tracking echocardiography (3D-STE). METHODS: A prospective study was conducted involving 136 patients diagnosed with chronic coronary syndromes undergoing PCI, constituting the study group, alongside 110 age- and gender-matched healthy volunteers serving as the control group. Echocardiographic evaluations, including both conventional and three-dimensional assessments, were performed on all study participants at 1-week, 6, and 12 months post-PCI. Parameters such as tricuspid annular plane systolic excursion (TAPSE) were derived from conventional echocardiography, while tricuspid lateral annular systolic velocity (S') was measured via tissue Doppler imaging. 3D-STE was utilized to quantify metrics including right ventricular fractional area change (RVFAC), right ventricular free wall longitudinal strain (RVFWLS), right ventricular global longitudinal strain (RVGLS), right ventricular stroke volume (RVSV), and right ventricular ejection fraction (RVEF). RESULTS: TAPSE, S', RVFAC, RVFWLS, RVGLS, RVSV, and RVEF exhibited significant increases from 1-week to 6 months post-PCI (p < 0.05). However, from 6 to 12 months post-PCI, RVFAC, RVGLS, RVSV, and RVEF demonstrated no notable changes (p > 0.05). Meanwhile, TAPSE, S', and RVFWLS sustained significant elevations: TAPSE (19.63 ± 3.253% to 22.603 ± 2.885%, p < 0.001); S' (10.57 ± 2.643 to 12.61 ± 2.189 cm/s, p < 0.001); RVFWLS (18.64 ± 2.745% to 19.926 ± 3.291%, p = 0.002). At 12 months post-PCI, S', RVFAC, RVGLS, RVSV, and RVEF remained lower than those of the healthy control group, but the differences were not statistically significant (p > 0.05). However, RVFWLS was significantly lower compared to the healthy control group (19.926 ± 3.291% vs. 22.10 ± 1.994%, p < 0.001). CONCLUSION: Following PCI, right ventricular systolic function in patients with chronic coronary syndromes improves significantly over time. However, even at the 12-month post-PCI mark, RVFWLS remains lower than that of the control group. Notably, 3D-STE emerges as a noninvasive method for quantifying right ventricular systolic function post-PCI in chronic coronary syndrome patients.
Asunto(s)
Ecocardiografía Tridimensional , Intervención Coronaria Percutánea , Disfunción Ventricular Derecha , Humanos , Femenino , Masculino , Intervención Coronaria Percutánea/métodos , Ecocardiografía Tridimensional/métodos , Persona de Mediana Edad , Estudios Prospectivos , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/etiología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Enfermedad Crónica , Función Ventricular Derecha/fisiología , Reproducibilidad de los Resultados , Resultado del TratamientoRESUMEN
INTRODUCTION: This study aimed to investigate the correlation between fundus blood flow parameters and the severity of pathological biopsy in patients with diabetic kidney disease (DKD). METHODS: Data of patients with type 2 diabetes mellitus who completed renal pathology biopsies and optical coherence tomography angiography (OCTA) examinations, including renal function, 24-h urine protein quantification, and macular flow imaging, were collected. DKD pathology biopsies were graded as stages 1-4, and differences and correlations of the parameters were compared between groups. The grading was transformed into early (stage 1) and late (stages 2-4), and regression analyses were conducted to develop a model, draw a nomogram, and test efficacy. RESULTS: This study included 157 eyes from 157 individuals in total. Urinary microalbumin and to urinary creatinine ratio (mALB/NCR) increased with pathological grading, whereas while glomerular filtration rate was decreased (p < 0.01). Corresponding retinal blood flow in superficial, deep, and full paracentral rings was decreased, which correlated with pathological grading (p < 0.01), with the highest blood flow density in the whole layer (r2 = -0.707). Meaningfully, in the early DKD model (area under the curve = 0.929 [0.889-0.970], p < 0.01), whole-layer blood flow density, mALB/NCR, and diabetes duration were statistically significant. CONCLUSIONS: The decrease in macular retinal blood flow density detected by OCTA is closely associated with the increase in pathological grading of DKD and can be used as a noninvasive parameter for monitoring early changes in DKD.
Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Angiografía con Fluoresceína , Vasos Retinianos , Tomografía de Coherencia Óptica , Humanos , Masculino , Persona de Mediana Edad , Femenino , Tomografía de Coherencia Óptica/métodos , Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/diagnóstico , Vasos Retinianos/patología , Vasos Retinianos/fisiopatología , Angiografía con Fluoresceína/métodos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Anciano , Flujo Sanguíneo Regional/fisiología , Índice de Severidad de la Enfermedad , Retinopatía Diabética/fisiopatología , Retinopatía Diabética/diagnóstico , Tasa de Filtración Glomerular/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Estudios Retrospectivos , Fondo de OjoRESUMEN
Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.
Asunto(s)
Microbioma Gastrointestinal , Compuestos de Vinilo , Embarazo , Femenino , Humanos , Ratones , Animales , Exposición Materna/efectos adversos , Ciclohexenos/toxicidad , Ácidos y Sales Biliares , CarnitinaRESUMEN
Underwater acoustic sensor networks (UASNs) are critical to a range of applications from oceanographic data collection to submarine surveillance. In these networks, efficient energy management is critical due to the limited power resources of underwater sensors. The LEACH protocol, a popular cluster-based protocol, has been widely used in UASNs to minimize energy consumption. Despite its widespread use, the conventional LEACH protocol faces challenges such as an unoptimized cluster number and low transmission efficiency, which hinder its performance. This paper proposes an improved LEACH protocol for cluster-based UASNs, where the cluster number is optimized with an underwater energy propagation model to reduce energy consumption, and a transmission scheduling algorithm is also employed to achieve conflict-free parallel data transmission. Replication computing is introduced to the LEACH protocol to reduce the signaling in the clustering and data transmission phases. The simulation results show that the proposed protocol outperforms several conventional methods in terms of normalized average residual energy, average number of surviving nodes, average round when the first death node occurs, and the number of packets received by the base station.
RESUMEN
3-methyl-4-nitrophenol (PNMC), a well-known constituent of diesel exhaust particles and degradation products of insecticide fenitrothion, is a widely distributed environmental contaminant. PNMC is toxic to the female reproductive system; however, how it affects meiosis progression in oocytes is unknown. In this study, in vitro maturation of mouse oocytes was applied to investigate the deleterious effects of PNMC. We found that exposure to PNMC significantly compromised oocyte maturation. PNMC disturbed the spindle stability; specifically, it decreased the spindle density and increased the spindle length. The weakened spindle pole location of microtubule-severing enzyme Fignl1 may result in a defective spindle apparatus in PNMC-exposed oocytes. PNMC exposure induced significant mitochondrial dysfunction, including mitochondria distribution, ATP production, mitochondrial membrane potential, and ROS accumulation. The mRNA levels of the mitochondria-related genes were also significantly impaired. Finally, the above-mentioned alterations triggered early apoptosis in the oocytes. In conclusion, PNMC exposure affected oocyte maturation and quality through the regulation of spindle stability and mitochondrial function.
Asunto(s)
Enfermedades Mitocondriales , Oocitos , Femenino , Animales , Ratones , Cresoles , ADN Mitocondrial , MeiosisRESUMEN
Oculopharyngodistal myopathy (OPDM) is an adult-onset inherited neuromuscular disorder characterized by progressive ptosis, external ophthalmoplegia, and weakness of the masseter, facial, pharyngeal, and distal limb muscles. The myopathological features are presence of rimmed vacuoles (RVs) in the muscle fibers and myopathic changes of differing severity. Inheritance is variable, with either putative autosomal-dominant or autosomal-recessive pattern. Here, using a comprehensive strategy combining whole-genome sequencing (WGS), long-read whole-genome sequencing (LRS), linkage analysis, repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis polymerase chain reaction (AL-PCR), we identified an abnormal GGC repeat expansion in the 5' UTR of GIPC1 in one out of four families and three sporadic case subjects from a Chinese OPDM cohort. Expanded GGC repeats were further confirmed as the cause of OPDM in an additional 2 out of 4 families and 6 out of 13 sporadic Chinese individuals with OPDM, as well as 7 out of 194 unrelated Japanese individuals with OPDM. Methylation, qRT-PCR, and western blot analysis indicated that GIPC1 mRNA levels were increased while protein levels were unaltered in OPDM-affected individuals. RNA sequencing indicated p53 signaling, vascular smooth muscle contraction, ubiquitin-mediated proteolysis, and ribosome pathways were involved in the pathogenic mechanisms of OPDM-affected individuals with GGC repeat expansion in GIPC1. This study provides further evidence that OPDM is associated with GGC repeat expansions in distinct genes and highly suggests that expanded GGC repeat units are essential in the pathogenesis of OPDM, regardless of the genes in which the expanded repeats are located.