Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Org Chem ; 89(5): 2984-2995, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334453

RESUMEN

Rh(III)-catalyzed C7-alkylation of isatogens (indolin-3-one N-oxides) with malonic acid diazoesters has been developed. This strategy utilizes oxygen anion on the N-oxide group of isatogens as a directing group and successfully achieves the synthesis of a series of C7-alkylated isatogens with moderate to good yields (48-86% yields). Moreover, the N-oxides of isatogens can not only serve as the simple directing group for C7-H bond cleavage but also be deoxidized for easy removal.

2.
Plant Biotechnol J ; 17(2): 397-409, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29992702

RESUMEN

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Myrica/genética , Mapeo Cromosómico , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Marcadores Genéticos/genética , Anotación de Secuencia Molecular , Myrica/crecimiento & desarrollo , Myrica/fisiología , Especificidad de Órganos , Fitomejoramiento
3.
Hortic Res ; 7(1): 53, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257239

RESUMEN

Red bayberry (Morella rubra) is an evergreen fruit tree found in southern China whose whole-genome sequence has recently been published. We updated the linkage map of the species by adding 118 SSR markers and the female-specific marker MrFT2_BD-SEX. The integrated map included eight linkage groups and spanned 491 cM. Eleven sex-associated markers were identified, six of which were located in linkage group 8, in agreement with the previously reported location of the sex-determining region. The MrFT2_BD-SEX marker was genotyped in 203 cultivated accessions. Among the females of the accessions, we found two female-specific alleles, designated W-b (151 bp) and W-d (129 bp). We previously found that 'Dongkui', a female cultivar, could produce viable pollen (we refer to such plants 'Dongkui-male') and serve as the paternal parent in crosses. The genotypes of the MrFT2_BD-SEX marker were W-b/Z in 'Biqi' and W-d/Z in 'Dongkui-male'. The progeny of a cross between these parents produced a 3:1 female (W-) to male (ZZ) ratio and the expected 1:1:1:1 ratio of W-b/W-d: W-b/Z: W-d/Z: Z/Z. In addition, the flowering and fruiting phenotypes of all the F1 progeny fit their genotypes. Our results confirm the existence of ZW sex determination and show that the female phenotype is controlled by a single dominant locus (W) in a small genomic region (59 kb and less than 3.3 cM). Furthermore, we have produced a homozygous "super female" (WW) that should produce all-female offspring in the F2 generation, providing a foundation for commercial use and presenting great potential for use in modern breeding programs.

4.
Gene ; 717: 144045, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31425741

RESUMEN

The MADS-box gene family encodes transcription factors and plays an important role in plant growth and the development of flower and fruit. A perennial dioecious plant, the red bayberry genome has been published recently, providing the opportunity to analyze the MADS-box gene family and its role in fruit development and ripening. Here, we identified 54 MADS-box genes in the red bayberry genome, and classified them into two types based on phylogenetic analysis. Thirteen Type I MADS-box genes were subdivided into three subfamilies and 41 Type II MADS-box genes into 13 subfamilies. A total of 46 MADS-box genes were distributed across eight red bayberry chromosomes, and the other eight genes were located on the unmapped scaffolds. Transcriptome analysis suggested that the expression of most Type II genes was higher than Type I in five female tissues. Moreover, 26 MADS-box genes were expressed during red bayberry fruit development and ten of them showed high expression. qRT-PCR showed that the expression of MrMADS01 (SEP, MIKCC), with differences between the pale pink and red varieties, increased significantly at the final ripening stage, suggesting it may participate in ripening as positive regulator and related to anthocyanin biosynthesis. These results provide some clues for future study of MADS-box genes in red bayberry, especially in ripening process.


Asunto(s)
Frutas/fisiología , Proteínas de Dominio MADS/genética , Myricaceae/genética , Proteínas de Plantas/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Filogenia
5.
Carbohydr Polym ; 173: 592-599, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28732903

RESUMEN

A convenient and efficient two-stage bioprocess was established for fructo-oligosaccharides (FOSs) production, during which the endo-inulinase was first produced and subsequently the inulin supplemented was directly hydrolyzed by the produced endo-inulinase, in the meantime the generated non-prebiotic saccharides was assimilated by the yeast cells. This process was implemented by an engineered Yarrowia lipolytica strain Enop56, in which an optimized endo-inulinase gene from Aspergillus niger was overexpressed. When the strain Enop56 was fermented with an inulin concentration of 600g/L in a 10-L bioreactor, the inulinase activity, FOSs titer, yield and productivity reached to 551.6U/mL, 546.6g/L, 0.91gFOS/gInulin, and 15.18g/L/h, respectively. Besides, the hydrolysis products were mainly FOSs with polymerization degrees of 3-5 and the total amount of non-prebiotic mono- and disaccharides was only 4.97% in the final fermentation broth. This study demonstrated that the two-stage bioprocess using the strain Enop56 was a promising strategy to produce FOSs on an industrial scale.


Asunto(s)
Microbiología Industrial , Inulina/metabolismo , Oligosacáridos/biosíntesis , Yarrowia/metabolismo , Fermentación , Hidrólisis
7.
J Zhejiang Univ Sci B ; 15(11): 997-1005, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25367792

RESUMEN

Chinese bayberry (Myrica rubra Sieb. et Zucc.) is one of the important subtropical fruit crops native to the South of China and Asian countries. In this study, 107 novel simple sequence repeat (SSR) molecular markers, a powerful tool for genetic diversity studies, cultivar identification, and linkage map construction, were developed and characterized from whole genome shotgun sequences. M13 tailing for forward primers was applied as a simple method in different situations. In total, 828 alleles across 45 accessions were detected, with an average of 8 alleles per locus. The number of effective alleles ranged from 1.22 to 10.41 with an average of 4.08. The polymorphic information content (PIC) varied from 0.13 to 0.89, with an average of 0.63. Moreover, these markers could also be amplified in their related species Myrica cerifera (syn. Morella cerifera) and Myrica adenophora. Seventy-eight SSR markers can be used to produce a genetic map of a cross between 'Biqi' and 'Dongkui'. A neighbor-joining (NJ) tree was constructed to assess the genetic relationships among accessions, and the elite accessions 'Y2010-70', 'Y2012-140', and 'Y2012-145', were characterized as potential new genotypes for cultivation.


Asunto(s)
Variación Genética/genética , Genoma de Planta/genética , Myrica/clasificación , Myrica/genética , Plantones/clasificación , Plantones/genética , Secuencia de Bases , Mapeo Cromosómico/métodos , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA