Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Gynecol Obstet ; 310(2): 729-737, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38806943

RESUMEN

OBJECTIVE: This study sought to validate the Rossi nomogram in a Chinese population and then to include the Bishop score to see if it has an effect on the accuracy of the nomogram. MATERIALS AND METHODS: The Rossi predictive model was applied and externally validated in a retrospective cohort from August 2017 and July 2023 in a Chinese tertiary-level medical center. For the revision and updating of the models, the regression coefficients of all the predictors (except race) were re-estimated and then the cervical Bishop score at the time of induction was added. Each model's performance was measured using the receiver-operating characteristic and calibration plots. Decision curve analysis determined the range of the probability threshold for each prediction model that would be of clinical value. RESULTS: A total of 721 women met the inclusion criteria, of whom 183 (25.4%) underwent a cesarean delivery. The calibration demonstrated the underestimation of the original model, with an area under the curve (AUC) of 0.789 (95% confidence interval [CI] 0.753-0.825, p < 0.001). After recalibrating the original model, the discriminative performance was improved from 0.789 to 0.803. Moreover, the discriminatory power of the updated model was further improved when the Bishop score at the time of induction was added to the recalibrated multivariable model. Indeed, the updated model demonstrated good calibration and discriminatory power, with an AUC of 0.811. The decision curve analysis indicated that all the models (original, recalibrated, and updated) provided higher net benefits of between 0 and 60% of the probability threshold, which indicates the benefits of using the models to make decisions concerning patients who fall within the identified range of the probability threshold. The net benefits of the updated model were higher than those of the original model and the recalibrated model. CONCLUSION: The nomogram used to predict cesarean delivery following induction developed by Rossi et al. has been validated in a Chinese population in this study. More specifically, adaptation to a Chinese population by excluding ethnicity and including the Bishop score prior to induction gave rise to better performance. The three models (original, recalibrated, and updated) offer higher net benefits when the probability threshold is between 0 and 60%.


Asunto(s)
Cesárea , Trabajo de Parto Inducido , Nomogramas , Humanos , Femenino , Embarazo , Cesárea/estadística & datos numéricos , Estudios Retrospectivos , Adulto , Trabajo de Parto Inducido/estadística & datos numéricos , China , Curva ROC , Área Bajo la Curva
2.
J Environ Manage ; 351: 119951, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171125

RESUMEN

Understanding compositional changes during secondary forest recovery is crucial for effective restoration efforts. While previous research has predominantly focused on shifts in species composition at the stand scale, this study delves into the recovery dynamics in three compositional aspects of location (neighbor distances), size (tree diameters), and species (tree species) at both stand and neighborhood scale. The investigation spans nine chronosequence plots within a tropical lowland rainforest ecosystem after shifting cultivation, including three each for young-secondary forests (18-30 years), old-secondary forests (60 years), and old-growth forests (without obvious human interference). The quantification of location, size, and species composition involved categorized neighbor distances (Near, Moderate, Far-distance), tree diameters (Small, Medium, Large-tree), and tree species (Pioneer, Intermediate, Climax-species) into three groups, respectively. Compositional changes at the stand scale (plot) were directly based on these groups, while at the neighborhood scale, assessment involved combination types of these groups within a neighborhood (comprising three adjacent trees). At the stand scale, neighbor distances shifted from Near to Moderate and Far, tree diameters transitioned from Small to Medium and Large, and tree species of Pioneer gave way to Climax. Meanwhile, at the neighborhood scale, there was a notable decline in the aggregations of Near-distance (N), Small-tree (S), and Pioneer-species (P), while the mixtures of Far and Moderate-distance (F-M), Large and Small-tree (L-S), and Climax and Intermediate-species (C-I) experienced a marked increase. The compositional change exhibited a recovery pattern, with the fastest recovery in neighbor distances, followed by tree diameters and tree species. Moreover, compositional recovery in tree diameters and tree species at the neighborhood scale generally lagged behind that at the stand scale. The study suggests that rapid restoration of secondary forest can be achieved by different targeted cutting according to the recovery stages, aimed at reduce the Pioneer-species, Small-tree and Near-distance in neighborhood. Our findings underscore that analyzing the compositional changes in three aspects at two scales not only provides a profound understanding of secondary forest recovery dynamics, but also offers valuable insights for guiding practices in the restoration of degraded forest ecosystems.


Asunto(s)
Ecosistema , Bosque Lluvioso , Humanos , Bosques , Árboles , China , Clima Tropical
3.
Front Plant Sci ; 15: 1372122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693923

RESUMEN

Introduction: Tropical forests are characterized by intricate mosaics of species-rich and structurally complex forest communities. Evaluating the functional vulnerability of distinct community patches is of significant importance in establishing conservation priorities within tropical forests. However, previous assessments of functional vulnerability in tropical forests have often focused solely on isolated factors or individual disturbance events, with limited consideration for a broad spectrum of disturbances and the responses of diverse species. Methods: We assessed the functional vulnerability of woody plant communities in a 60-ha dynamic plot within a tropical montane rainforest by conducting in silico simulations of a wide range disturbances. These simulations combined plant functional traits and community properties, including the distribution of functional redundancy across the entire trait space, the distribution of abundance across species, and the relationship between species trait distinctiveness and species abundance. We also investigated the spatial distribution patterns of functional vulnerability and their scale effects, and employed a spatial autoregressive model to examine the relationships between both biotic and abiotic factors and functional vulnerability at different scales. Results: The functional vulnerability of tropical montane rainforest woody plant communities was generally high (the functional vulnerability of observed communities was very close to that of the most vulnerable virtual community, with a value of 72.41% on average at the 20m×20m quadrat scale), and they exhibited significant spatial heterogeneity. Functional vulnerability decreased with increasing spatial scale and the influence of both biotic and abiotic factors on functional vulnerability was regulated by spatial scale, with soil properties playing a dominant role. Discussion: Our study provides new specific insights into the comprehensive assessment of functional vulnerability in the tropical rainforest. We highlighted that functional vulnerabilities of woody plant communities and their sensitivity to environmental factors varied significantly within and across spatial scales in the tropical rainforest landscape. Preserving and maintaining the functionality of tropical ecosystems should take into consideration the variations in functional vulnerability among different plant communities and their sensitivity to environmental factors.

4.
Nanoscale ; 16(16): 7862-7873, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38568087

RESUMEN

Recent years have witnessed advances in chemical vapor deposition growth of graphene films on metal foils with fine scalability and thickness controllability. However, challenges for obtaining wrinkle-free, defect-free and large-area uniformity remain to be tackled. In addition, the real commercial applications of graphene films still require industrially compatible transfer techniques with reliable performance of transferred graphene, excellent production capacity, and suitable cost. Transferred graphene films, particularly with a large area, still suffer from the presence of transfer-related cracks, wrinkles and contaminants, which would strongly deteriorate the quality and uniformity of transferred graphene films. Potential applications of graphene films include moisture barrier films, transparent conductive films, electromagnetic shielding films, and optical communications; such applications call different requirements for the performance of transferred graphene, which, in turn, determine the suitable transfer techniques. Besides the reliable transfer process, automatic machines should be well developed for the future batch transfer of graphene films, ensuring the repeatability and scalability. This mini-review provides a summary of recent advances in the transfer of graphene films and offers a perspective for future directions of transfer techniques that are compatible for industrial batch transfer.

5.
Adv Mater ; 36(15): e2308950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288661

RESUMEN

The real applications of chemical vapor deposition (CVD)-grown graphene films require the reliable techniques for transferring graphene from growth substrates onto application-specific substrates. The transfer approaches that avoid the use of organic solvents, etchants, and strong bases are compatible with industrial batch processing, in which graphene transfer should be conducted by dry exfoliation and lamination. However, all-dry transfer of graphene remains unachievable owing to the difficulty in precisely controlling interfacial adhesion to enable the crack- and contamination-free transfer. Herein, through controllable crosslinking of transfer medium polymer, the adhesion is successfully tuned between the polymer and graphene for all-dry transfer of graphene wafers. Stronger adhesion enables crack-free peeling of the graphene from growth substrates, while reduced adhesion facilitates the exfoliation of polymer from graphene surface leaving an ultraclean surface. This work provides an industrially compatible approach for transferring 2D materials, key for their future applications, and offers a route for tuning the interfacial adhesion that would allow for the transfer-enabled fabrication of van der Waals heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA