Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 197-203, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38016046

RESUMEN

Interface interaction between aromatic molecules and noble metals plays a prominent role in fundamental science and technological applications. However, probing π-metal interactions under ambient conditions remains challenging, as it requires characterization techniques to have high sensitivity and molecular specificity without any restrictions on the sample. Herein, the interactions between polycyclic aromatic hydrocarbon (PAH) molecules and Au nanodimers with a subnanometer gap are investigated by surface-enhanced Raman spectroscopy (SERS). A cleaner and stronger plasmonic field of subnanometer gap Au nanodimer structures was constructed through solvent extraction. High sensitivity and strong π-Au interaction between PAHs and Au nanodimers are observed. Additionally, the density functional theory calculation confirmed the interactions of PAHs physically absorbed on the Au surface; the binding energy and differential charge further theoretically indicated the correlation between the sensitivity and the number of PAH rings, which is consistent with SERS experimental results. This work provides a new method to understand the interactions between aromatic molecules and noble metal surfaces in an ambient environment, also paving the way for designing the interfaces in the fields of catalysis, sensors, and molecular electronics.

2.
Analyst ; 149(6): 1759-1765, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38363169

RESUMEN

To achieve highly sensitive detection using surface-enhanced Raman spectroscopy (SERS), it is imperative to fabricate a substrate with a high density of hot spots and facilitate the entry of target molecules into these hot spot regions. However, steric hindrance arising from the presence of surfactants and ligands on the SERS substrate may impede the access of target molecules to the hot spots. Here, we fabricate non-close-packed three-dimensional (3D) supraparticles with high-density hot spots to actively capture molecules. The formation of 3D supraparticles is attributed to the minimization of free energy during the gradual contraction of the droplet. The numerous capillaries present in non-close-packed supraparticles induce the movement of target molecules into the hot spot region through capillary force along with the solution. The results demonstrate that the SERS enhancement effect of 3D supraparticles is at least one order of magnitude higher than that of multi-layered nanoparticle structures formed under natural drying conditions. In addition, the SERS performance of 3D supraparticles is evaluated with diverse target molecules, including antimicrobial agents and drugs. Hence, this work provides a new idea for the preparation of non-close-packed substrates for SERS sensitive detection.

3.
Nano Lett ; 23(12): 5445-5452, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36995130

RESUMEN

Fabricating ultrasmall nanogaps for significant electromagnetic enhancement is a long-standing goal of surface-enhanced Raman scattering (SERS) research. However, such electromagnetic enhancement is limited by quantum plasmonics as the gap size decreases below the quantum tunneling regime. Here, hexagonal boron nitride (h-BN) is sandwiched as a gap spacer in a nanoparticle-on-mirror (NPoM) structure, effectively blocking electron tunneling. Layer-dependent scattering spectra and theoretical modeling confirm that the electron tunneling effect is screened by monolayer h-BN in a nanocavity. The layer-dependent SERS enhancement factor of h-BN in the NPoM system monotonically increases as the number of layers decreases, which agrees with the prediction by the classical electromagnetic model but not the quantum-corrected model. The ultimate plasmonic enhancement limits are extended in the classical framework in a single-atom-layer gap. These results provide deep insights into the quantum mechanical effects in plasmonic systems, enabling the potential novel applications based on quantum plasmonic.

4.
J Am Chem Soc ; 144(29): 13174-13183, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35723445

RESUMEN

Quantitative measurement of the plasmonic field distribution is of great significance for optimizing highly efficient optical nanodevices. However, the quantitative and precise measurement of the plasmonic field distribution is still an enormous challenge. In this work, we design a unique nanoruler with a ∼7 Šspatial resolution, which is based on a two-dimensional atomic crystal where the intercalated monolayer WS2 is a surface-enhanced Raman scattering (SERS) probe and four layers of MoS2 are a reference layer in a nanoparticle-on-mirror (NPoM) structure to quantitatively and directionally probe the longitudinal plasmonic field distribution at high permittivity by the quantitative SERS intensity of WS2 located in different layers. A subnanometer two-dimensional atomic crystal was used as a spacer layer to overcome the randomness of the molecular adsorption and Raman vibration direction. Combined with comprehensive theoretical derivation, numerical calculations, and spectroscopic measurements, it is shown that the longitudinal plasmonic field in an individual nanocavity is heterogeneously distributed with an unexpectedly large intensity gradient. We analyze the SERS enhancement factor on the horizontal component, which shows a great attenuation trend in the nanocavity and further provides precise insight into the horizontal component distribution of the longitudinal plasmonic field. We also provide a direct experimental verification that the longitudinal plasmonic field decays more slowly in high dielectric constant materials. These precise experimental insights into the plasmonic field using a two-dimensional atomic crystal itself as a Raman probe may propel understanding of the nanostructure optical response and applications based on the plasmonic field distribution.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanoestructuras/química , Espectrometría Raman/métodos
5.
Anal Chem ; 94(11): 4831-4840, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35254058

RESUMEN

Quantitative measurement is one of the ultimate targets for surface-enhanced Raman spectroscopy (SERS), but it suffers from difficulties in controlling the uniformity of hot spots and placing the target molecules in the hot spot space. Here, a convenient approach of three-phase equilibrium controlling the shrinkage of three-dimensional (3D) hot spot droplets has been demonstrated for the quantitative detection of the anticancer drug 5-fluorouracil (5-FU) in serum using a handheld Raman spectrometer. Droplet shrinkage, triggered by the shaking of aqueous nanoparticle (NP) colloids with immiscible oil chloroform (CHCl3) after the addition of negative ions and acetone, not only brings the nanoparticles in close proximity but can also act as a microreactor to enhance the spatial enrichment capability of the analyte in plasmonic sites and thereby realize simultaneously controlling 3D hot spots and placing target molecules in hot spots. Moreover, the shrinking process of Ag colloid droplets has been investigated using a high-speed camera, an in situ transmission electron microscope (in situ TEM), and a dark-field microscope (DFM), demonstrating the high stability and uniformity of nanoparticles in droplets. The shrunk Ag NP droplets exhibit excellent SERS sensitivity and reproducibility for the quantitative analysis of 5-FU over a large range of 50-1000 ppb. Hence, it is promising for quantitative analysis of complex systems and long-term monitoring of bioreactions.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Antineoplásicos/farmacología , Coloides , Fluorouracilo , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
6.
Analyst ; 147(15): 3456-3463, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801662

RESUMEN

The aggregation of nanoparticles is the key factor to form hot spots for the flocculation-enhanced Raman spectroscopy (FLERS) method. However, the structure of flocculation is still not clear. It is therefore necessary to explore and analyze the aggregation process of nanoparticles more carefully, so as to realize a better application of FLERS. Here, we report the application of in situ liquid cell transmission electron microscopy (TEM) combined with an in situ high-speed camera to analyze the particle behaviors. The results showed that flocculation can exist stably and the gap between the nanoparticles in the flocculation always remained at 7-9 nm, which ensured the high stability and sensitivity of the FLERS method. We successfully applied FLERS to the in situ noninvasive probing of cupping effect substances. The results indicated the scientific principle behind the traditional Chinese medicine method to some extent, which thus provides a new and effective method for the in situ dynamic monitoring of biological systems.


Asunto(s)
Nanopartículas , Espectrometría Raman , Floculación , Microscopía Electrónica de Transmisión , Nanopartículas/química
7.
Nanotechnology ; 33(17)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008075

RESUMEN

WTe2nanostructures have intrigued much attention due to their unique properties, such as large non-saturating magnetoresistance, quantum spin Hall effect and topological surface state. However, the controllable growth of large-area atomically thin WTe2nanostructures remains a significant challenge. In the present work, we demonstrate the controllable synthesis of 1T' atomically thin WTe2nanoflakes (NFs) by water-assisted ambient pressure chemical vapor deposition method based on precursor design and substrate engineering strategies. The introduction of water during the growth process can generate a new synthesized route by reacting with WO3to form intermediate volatile metal oxyhydroxide. Using WO3foil as the growth precursor can drastically enhance the uniformity of as-prepared large-area 1T' WTe2NFs compared to WO3powders. Moreover, highly oriented WTe2NFs with distinct orientations can be obtained by using a-plane and c-plane sapphire substrates, respectively. Corresponding precursor design and substrate engineering strategies are expected to be applicable to other low dimensional transition metal dichalcogenides, which are crucial for the design of novel electronic and optoelectronic devices.

8.
J Am Chem Soc ; 143(20): 7769-7776, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33988987

RESUMEN

Over the past decade, many efforts have been devoted to designing and fabricating substrates for surface-enhanced Raman spectroscopy (SERS) with abundant hot spots to improve the sensitivity of detection. However, there have been many difficulties involved in causing molecules to enter hot spots actively or effectively. Here, we report a general SERS method for actively capturing target molecules in small gaps (hot spots) by constructing a nanocapillary pumping model. The ubiquity of hot spots and the inevitability of molecules entering them lights up all the hot spots and makes them effective. This general method can realize the highly sensitive detection of different types of molecules, including organic pollutants, drugs, poisons, toxins, pesticide residues, dyes, antibiotics, amino acids, antitumor drugs, explosives, and plasticizers. Additionally, in the dynamic detection process, an efficient and stable signal can be maintained for 1-2 min, which increases the practicality and operability of this method. Moreover, a dynamic detection process like this corresponds to the processes of material transformation in some organisms, so the method can be used to monitor transformation processes such as the death of a single cell caused by photothermal stimulation. Our method provides a novel pathway for generating hot spots that actively attract target molecules, and it can achieve general ultratrace detection of diverse substances and be applied to the study of cell behaviors in biological systems.

9.
Anal Chem ; 93(48): 16086-16095, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34730332

RESUMEN

It is highly challenging to construct the best SERS hotspots for the detection of proteins by surface-enhanced Raman spectroscopy (SERS). Using its own characteristics to construct hotspots can achieve the effect of sensitivity and specificity. In this study, we built a fishing mode device to detect the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at low concentrations in different detection environments and obtained a sensitive SERS signal response. Based on the spatial resolution of proteins and their protein-specific recognition functions, SERS hotspots were constructed using aptamers and small molecules that can specifically bind to RBD and cooperate with Au nanoparticles (NPs) to detect RBD in the environment using SERS signals of beacon molecules. Therefore, two kinds of AuNPs modified with aptamers and small molecules were used in the fishing mode device, which can specifically recognize and bind RBD to form a stable hotspot to achieve high sensitivity and specificity for RBD detection. The fishing mode device can detect the presence of RBD at concentrations as low as 0.625 ng/mL and can produce a good SERS signal response within 15 min. Meanwhile, we can detect an RBD of 0.625 ng/mL in the mixed solution with various proteins, and the concentration of RBD in the complex environment of urine and blood can be as low as 1.25 ng/mL. This provides a research basis for SERS in practical applications for protein detection work.


Asunto(s)
Sitios de Unión , Nanopartículas del Metal , Glicoproteína de la Espiga del Coronavirus/química , COVID-19 , Oro , Humanos , SARS-CoV-2
10.
J Org Chem ; 86(3): 2431-2436, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33472001

RESUMEN

Four new indole diterpenoids, ascandinines A-D (1-4), were isolated from an Antarctic sponge-derived fungus Aspergillus candidus HDN15-152. Their structures, including absolute configurations, were established based on NMR data, computational calculations, and biosynthetic considerations. Ascandinine A (1) possesses an unprecedented 2-oxabicyclo[2.2.2]octan-3-ol motif embedded in a pentacyclic ring system, while compounds 2-4 represent a rare type of indole diterpenoid featuring the 6/5/5/6/6/6/6-fused ring system. Compound 3 displayed anti-influenza virus A (H1N1) activity with an IC50 value of 26 µM, while compound 4 showed cytotoxicity against HL-60 cells with an IC50 value of 7.8 µM.


Asunto(s)
Diterpenos , Subtipo H1N1 del Virus de la Influenza A , Aspergillus , Diterpenos/farmacología , Hongos , Humanos , Indoles/farmacología , Estructura Molecular
11.
Nanotechnology ; 32(46)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315144

RESUMEN

Germanium diselenide (GeSe2) has emerged as a new member of anisotropic two-dimensional (2D) materials and gained increasing attention because of its excellent air stability, wide band gap and unique anisotropic properties, which exhibits promising applications in the fields of electronics, optoelectronics and polarized photodetection. However, the controllable epitaxial growth of large-scale and high-quality GeSe2nanostructures to date remains a big challenge. Herein, GeSe2nanofilms with lateral size up to centimeter scale have been successfully prepared on mica substrate by employing chemical vapor deposition technique. Experimental results demonstrated that hydrogen is the key factor for the controllable growth of GeSe2nanostructures and GeSe2-based heterostructures. Corresponding growth mechanism was proposed based on systematical characterizations. The nonlinear optical properties of as-prepared GeSe2were investigated by employing open-aperture z-scan technique exhibiting significant saturable and reverse saturable absorption behaviors at wavelengths of 400 nm and 800 nm, respectively. This study provides a new and robust route for fabricating GeSe2nanostructures and 2D heterostructures, which will benefit the development of GeSe2-based nonlinear optical and optoelectronic devices.

12.
Mar Drugs ; 19(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540563

RESUMEN

Six undescribed polyhydroxy p-terphenyls, namely asperterphenyllins A-F, were isolated from an endophytic fungus Aspergillus candidus LDJ-5. Their structures were determined by NMR and MS data. Differing from the previously reported p-terphenyls, asperterphenyllin A represents the first p-terphenyl dimer connected by a C-C bond. Asperterphenyllin A displayed anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 53 µM and 21 µM, respectively. The anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity of p-terphenyls are reported for the first time. Asperterphenyllin G exhibited cytotoxicity against nine cell lines with IC50 values ranging from 0.4 to 1.7 µM. Asperterphenyllin C showed antimicrobial activity against Proteus species with a MIC value of 19 µg/mL.


Asunto(s)
Aspergillus/efectos de los fármacos , Endófitos/efectos de los fármacos , Rhizophoraceae , Compuestos de Terfenilo/aislamiento & purificación , Compuestos de Terfenilo/farmacología , Aspergillus/fisiología , Endófitos/fisiología , Células HCT116 , Células HL-60 , Células HeLa , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Células K562 , Células MCF-7 , Compuestos de Terfenilo/química
13.
Gastroenterol Hepatol ; 44(1): 1-12, 2021 Jan.
Artículo en Inglés, Español | MEDLINE | ID: mdl-33039171

RESUMEN

BACKGROUND: Topotecan is an anti-cancer chemotherapy drug with common side effects, including hepatotoxicity. In this study, we aim to investigate the mechanisms of topotecan-induced hepatocellular injury beyond conventional DNA damage. MATERIALS AND METHODS: Methyl Thiazolyl Tetrazolium (MTT) assay was used to detect the inhibitory effect of topotecan on cell proliferation. Western blot was used to detect protein expression. Flow cytometry assay was performed to determine apoptosis rate under topotecan treatment. ASCT2 overexpression was addressed using adenovirus vector. qRT-PCR and western blot assay were used to detect the expression of ASCT2. Glutamine uptake, intracellular glutathione (GSH) and reactive oxygen species (ROS) level were detected by glutamine detection kit, GSH detection kit and ROS detection kit respectively. RESULTS: MTT results showed that topotecan had an inhibitory effect on cell proliferation and induced apoptosis in both L02 and HepG2 cell lines. Topotecan inhibited the expression of glutamine transporter ASCT2 and the uptake of glutamine in both L02 and HepG2 cell lines. The uptake of glutamine and the GSH level was increased in both L02 and HepG2 cell lines after ASCT2 overexpression. The ROS level was inhibited by ASCT2 overexpression upon topotecan treatment in both L02 and HepG2 cell lines. Topotecan-induced hepatocellular apoptosis and proliferation inhibition were attenuated by ASCT2 overexpression in both L02 and HepG2 cell lines. CONCLUSION: Topotecan-induced hepatocytes death is dependent on ASCT2 down-regulation, which causes oxidative stress via inhibiting GSH production.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Glutamina/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Estrés Oxidativo/fisiología , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Sistema de Transporte de Aminoácidos ASC/efectos de los fármacos , Sistema de Transporte de Aminoácidos ASC/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Glutatión/efectos de los fármacos , Glutatión/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor/efectos de los fármacos , Antígenos de Histocompatibilidad Menor/genética , Especies Reactivas de Oxígeno/metabolismo
14.
Eur Respir J ; 56(2)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32430429

RESUMEN

BACKGROUND: Timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a prerequisite for treatment and prevention. The serology characteristics and complement diagnosis value of the antibody test to RNA test need to be demonstrated. METHOD: Serial sera of 80 patients with PCR-confirmed coronavirus disease 2019 (COVID-19) were collected at the First Affiliated Hospital of Zhejiang University, Hangzhou, China. Total antibody (Ab), IgM and IgG antibodies against SARS-CoV-2 were detected, and the antibody dynamics during the infection were described. RESULTS: The seroconversion rates for Ab, IgM and IgG were 98.8%, 93.8% and 93.8%, respectively. The first detectible serology marker was Ab, followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 days post exposure (d.p.e.) or 9, 10 and 12 days post onset (d.p.o.), respectively. The antibody levels increased rapidly beginning at 6 d.p.o. and were accompanied by a decline in viral load. For patients in the early stage of illness (0-7 d.p.o), Ab showed the highest sensitivity (64.1%) compared with IgM and IgG (33.3% for both; p<0.001). The sensitivities of Ab, IgM and IgG increased to 100%, 96.7% and 93.3%, respectively, 2 weeks later. When the same antibody type was detected, no significant difference was observed between enzyme-linked immunosorbent assays and other forms of immunoassays. CONCLUSIONS: A typical acute antibody response is induced during SARS-CoV-2 infection. Serology testing provides an important complement to RNA testing in the later stages of illness for pathogenic-specific diagnosis and helpful information to evaluate the adapted immunity status of patients.


Asunto(s)
Betacoronavirus , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/sangre , Neumonía Viral/diagnóstico , Adulto , Anciano , COVID-19 , Prueba de COVID-19 , China , Infecciones por Coronavirus/complicaciones , Femenino , Hospitalización , Humanos , Periodo de Incubación de Enfermedades Infecciosas , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/complicaciones , SARS-CoV-2 , Sensibilidad y Especificidad , Seroconversión , Evaluación de Síntomas , Factores de Tiempo , Carga Viral
15.
J Nat Prod ; 83(1): 8-13, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31904949

RESUMEN

Nine previously undescribed prenylated p-terphenyls, prenylterphenyllins F-J (1, 2, 4-6) and prenylcandidusins D-G (3, 7-9), were isolated from an endophytic fungus, Aspergillus candidus LDJ-5. Their structures were determined from NMR and MS data. Differing from previously reported p-terphenyls, compound 3 represents a rare 6,5,6,6-fused ring system. Compounds 4-6 are antimicrobial, and compounds 1, 4, 6, and 9 are cytotoxic.


Asunto(s)
Antibacterianos/química , Aspergillus/química , Compuestos de Terfenilo/química , Antibacterianos/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Compuestos de Terfenilo/farmacología
16.
Appl Microbiol Biotechnol ; 102(11): 4817-4827, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29675800

RESUMEN

Human neutrophil peptide 1 (HNP1) is a small (3.44 kDa) cationic peptide that is a distinct member of the defensin family. HNP1 plays a crucial role in controlling bacterial infections, particularly by antibiotic-resistant bacteria, through membrane perforation patterns. The structural characteristics of HNP1's three intramolecular disulfide bridges cause difficulty in its synthesis via chemical methods. In this study, bioactive recombinant HNP1 was produced using the Pichia pastoris (P. Pichia) expression system. HNP1 was fused with the polyhedrin of Bombyx mori and enhanced green fluorescent protein (EGFP) to prevent HNP1 toxicity in yeast host cells under direct expression. An enterokinase protease cleavage site (amino acid sequence DDDDK) was designed upstream of the HNP1 peptide to obtain the antibacterial peptide HNP1 with native structure after it was cleaved by the enterokinase. The fusion HNP1 protein (FHNP1) was successfully expressed and had a molecular mass of approximately 62.6 kDa, as determined using SDS-PAGE and Western blot. Then, the recovered FHNP1 was digested and purified; Tricine-SDS-PAGE results showed that HNP1 was successfully released from FHNP1. Functional analysis of induction against antibiotic-resistant Helicobacter pylori (H. pylori) showed that it was challenging for HNP1 to acquire resistance to the antibiotic-resistant H. pylori. Moreover, in vitro studies showed that HNP1 exerted a strong effect against antibiotic-resistant H. pylori activity. Furthermore, the animal model of H. pylori infection established in vivo showed that HNP1 significantly reduced the colonization of antibiotic-resistant H. pylori in the stomach. Our study indicated that this could be a new potential avenue for large-scale production of HNP1 for therapeutic application against the antibiotic-resistant H. pylori infection in humans.


Asunto(s)
Helicobacter pylori/efectos de los fármacos , Pichia/genética , alfa-Defensinas/genética , alfa-Defensinas/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/efectos de los fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , alfa-Defensinas/metabolismo , alfa-Defensinas/uso terapéutico
17.
Appl Microbiol Biotechnol ; 101(14): 5667-5675, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28488117

RESUMEN

Helicobacter pylori (H. pylori) shows increasingly enhanced resistance to various antibiotics, and its eradication has become a major problem in medicine. The antimicrobial peptide PGLa-AM1 is a short peptide with 22 amino acids and exhibits strong antibacterial activity. In this study, we investigated whether it has anti-H. pylori activity for the further development of anti-H. pylori drugs to replace existing antibiotics. However, the natural antimicrobial peptide PGLa-AM1 shows a low yield and is difficult to separate, limiting its application. A good strategy to solve this problem is to express the antimicrobial peptide PGLa-AM1 using gene engineering at a high level and low cost. For getting PGLa-AM1 with native structure, in this study, a specific protease cleavage site of tobacco etch virus (TEV) was designed before the PGLa-AM1 peptide. For convenience to purify and identify high-efficiency expression PGLa-AM1, the PGLa-AM1 gene was fused with the polyhedrin gene of Bombyx mori (B. mori), and a 6 × His tag was designed to insert before the amino terminus of the fusion protein. The fusion antibacterial peptide PGLa-AM1 (FAMP) gene codon was optimized, and the gene was synthesized and cloned into the Escherichia coli (E. coli) pET-30a (+) expression vector. The results showed that the FAMP was successfully expressed in E. coli. Its molecular weight was approximately 34 kDa, and its expression level was approximately 30 mg/L. After the FAMP was purified, it was further digested with TEV protease. The acquired recombinant antimicrobial peptide PGLa-AM1 exerted strong anti-H. pylori activity and therapeutic effect in vitro and in vivo.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Helicobacter pylori/efectos de los fármacos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Modelos Animales de Enfermedad , Escherichia coli/genética , Ingeniería Genética/economía , Ingeniería Genética/métodos , Infecciones por Helicobacter/tratamiento farmacológico , Ratones , Proteínas de la Matriz de Cuerpos de Oclusión , Potyvirus/enzimología , Potyvirus/genética , Conformación Proteica , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Proteínas Estructurales Virales/genética
18.
Pak J Pharm Sci ; 30(2): 421-427, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28649066

RESUMEN

SHENMAI injection, a prescription comprised of Panax ginseng and Ophiopogon japonicas, is being extensively applied in the field of cardio-protection and immune-modulation in China. Ginsenosides are the main active components in SHENMAI injection. In order to capture and analyze the pharmacokinetic profile of major ginsenosides of SHENMAI injection in Beagle dogs, liquid chromatography equipped with electro-spray ionization and tandem mass spectrometry method was applied in simultaneous determination for protopanaxatriol type ginsenoside (Re, Rf, Rg1), protopanaxadiol type ginsenoside (Rb2, Rb1, Rd, Rc) and oleanolic acid type ginsenoside (Ro). A C18 column (150 × 2.1mm, 5µm) and a linear gradient program were used to achieve chromatographic separation, with 0.02% acetic acid solution and acetonitrile. I.S. and ginsenosides were detected by LC-MS/MS in selective reaction mode. Good linearity spanning 5- 1500ng/mL was achieved with the R2 values higher than 0.99 for all analytes. Limit of quantification of all analytes were 3ng/mL. Intra- and inter-day precisions ranges from 0.47 to15.68 % and accuracies were within the range of 85.27-117.57%. Validated analyzing method was then used in the pharmacokinetic experiment for SMI in dogs. The results showed that the pharmacokinetic profile of protopanaxadiol, protopanaxatriol and oleanolic acid type ginsenoside were significant difference in dogs. Protopanaxadiol type ginsenosides exhibited an extremely higher level of exposure and a much slower elimination process. Whereas protopanaxatriol type ginsenosides were quickly eliminated. We concluded that 20 (S) - protopanaxadiol type ginseno sides could be a potential pharmacokinetic marker of SHENMAI injection.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Ginsenósidos/aislamiento & purificación , Ginsenósidos/farmacocinética , Animales , Cromatografía Liquida , Perros , Combinación de Medicamentos , Ginsenósidos/sangre , Infusiones Intravenosas , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
19.
Molecules ; 21(11)2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27801837

RESUMEN

Metronidazole (MNZ) is an effective agent that has been employed to eradicate Helicobacter pylori (H. pylori). The emergence of broad MNZ resistance in H. pylori has affected the efficacy of this therapeutic agent. The concentration of MNZ, especially the mutant prevention concentration (MPC), plays an important role in selecting or enriching resistant mutants and regulating therapeutic effects. A strategy to reduce the MPC that can not only effectively treat H. pylori but also prevent resistance mutations is needed. H. pylori is highly resistant to lysozyme. Lysozyme possesses a hydrolytic bacterial cell wall peptidoglycan and a cationic dependent mode. These effects can increase the permeability of bacterial cells and promote antibiotic absorption into bacterial cells. In this study, human lysozyme (hLYS) was used to probe its effects on the integrity of the H. pylori outer and inner membranes using as fluorescent probe hydrophobic 1-N-phenyl-naphthylamine (NPN) and the release of aspartate aminotransferase. Further studies using a propidium iodide staining method assessed whether hLYS could increase cell permeability and promote cell absorption. Finally, we determined the effects of hLYS on the bactericidal dynamics and MPC of MNZ in H. pylori. Our findings indicate that hLYS could dramatically increase cell permeability, reduce the MPC of MNZ for H. pylori, and enhance its bactericidal dynamic activity, demonstrating that hLYS could reduce the probability of MNZ inducing resistance mutations.


Asunto(s)
Pared Celular/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Helicobacter pylori/efectos de los fármacos , Metronidazol/farmacología , Muramidasa/farmacología , 1-Naftilamina/análogos & derivados , 1-Naftilamina/metabolismo , Aspartato Aminotransferasas , Sinergismo Farmacológico , Helicobacter pylori/genética , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mutación
20.
Zhong Yao Cai ; 39(9): 2046-8, 2016 Sep.
Artículo en Zh | MEDLINE | ID: mdl-30209910

RESUMEN

Objective: To establish a high phase liquid chromatography method of the content in quercetin,luteolin,apigenin,acacetin,and to compare the difference of content from four different varieties of Dendranthema morifolium in simultaneously. Methods: The UPLC methods were adopted,and the chromatographic column was Waters ACQUITYUPLC; the column was BEH C18( 50 mm ×2. 1 mm,1. 7 µm),the mobile phase was 0. 1% phosphoric acid solution-methanol in gradient elution,the flow rate was 0. 2 m L/min;and the detection wavelength was set at 320 nm; the column temperature 25 ℃; and the sample quantity was 1 µL. Results: In the range of 0. 0027 0. 0135 mg/m L( r1= 0. 9962) concentration within quercetin in a good linear relationship between peak area. In the range of0. 0032 0. 0160 mg/m L( r2= 0. 9963) concentration within luteolin in a good linear relationship between peak area. In the range of0. 0029 0. 0145 mg/m L( r3= 0. 9964) of apigenin in the mass concentration and the peak area. In the range of 0. 0029 0. 0145 mg/m L( r4= 0. 9963) concentration within acacetin in a good linear relationship between peak area. Conclusion: This method can be determined daisy quercetin,luteolin,apigenin,acacetin content in Dendranthema morifolium.


Asunto(s)
Cromatografía Líquida de Alta Presión , Chrysanthemum , Medicamentos Herbarios Chinos , Flavonoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA