Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 60(3): 763-772, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33690451

RESUMEN

This paper presents a real-time measurement method for the skin temperature of the human arm. In this method, the air temperature close to the arm skin is measured via large lateral shearing interferometry, thus avoiding the possible influences of the different physical characteristics of different people, while maintaining the advantages of optical measurement, including its noncontact, noninvasive, and rapid features. The method captures the real-time fringe patterns generated using a parallel-sided plate when a collimated laser light beam transfers through the air surrounding the arm to be measured. Additionally, the phase difference distribution caused by the temperature difference is calculated in combination with the background fringe patterns. The phase difference in the light close to the arm skin is then estimated via a linear fitting method. Accordingly, based on the size parameters of the arm cross section and the ambient temperature monitored in real time, the air temperature close to the arm skin, which is considered equal to the arm skin temperature, is determined while considering the heat conduction effect. Experimental measurements of the temperature of human arm skin were conducted using the proposed method, and the axillary temperatures of the same person before and after the experiments were also measured using an electronic thermometer and a mercury thermometer. Good agreements were found, verifying the reliability of the proposed method. Moreover, based on this method, the possibility for the construction of a real-time body temperature measurement system is also discussed.


Asunto(s)
Interferometría/instrumentación , Monitoreo Fisiológico/instrumentación , Temperatura Cutánea , Brazo , Simulación por Computador , Humanos , Luz , Modelos Químicos , Reproducibilidad de los Resultados , Piel , Termómetros
2.
Appl Opt ; 56(19): 5550-5558, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29047516

RESUMEN

The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.

3.
Bioresour Technol ; 403: 130889, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797362

RESUMEN

The effective monitoring of microalgae cultivation is crucial for optimizing their energy utilization efficiency. In this paper, a quantitative analysis method, using microalgae images based on two convolutional neural networks, EfficientNet (EFF) and residual network (RES), is proposed. Suspension samples prepared from two types of dried microalgae powders, Rhodophyta (RH) and Spirulina (SP), were used to mimic real microalgae cultivation settings. The method's prediction accuracy of the algae concentration ranges from 0.94 to 0.99. RH, with a distinctively pronounced red-green-blue value shift, achieves a higher prediction accuracy than SP. The prediction results of the two algorithms were significantly superior to those of a linear regression. Additionally, RES outperforms EFF in terms of its generalization ability and robustness, which is attributable to its distinct residual block architecture. The RES provides a viable approach for the image-based quantitative analysis.


Asunto(s)
Biomasa , Microalgas , Redes Neurales de la Computación , Spirulina , Microalgas/metabolismo , Spirulina/metabolismo , Rhodophyta/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
4.
Appl Opt ; 51(36): 8863-72, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23262626

RESUMEN

The film thickness of a hanging soap bubble has been studied along its gravitational orientation after its birth and before its bursting using large lateral shearing displacement interferometry, with a theoretical error of less than 0.325λ. The results show that the spatial distribution of the film thickness could be approximated with an exponential model in all captured frames, especially in the lower half of the soap bubble. Before its bursting, a special zone, where the water layer has drained out while the surfactant solution layer remains, will occur at the top of the soap bubble and gradually expand toward the bottom. Moreover, the simulated fringe patterns based on the computed values match well with the experimentally observed ones.

5.
J Acoust Soc Am ; 131(6): 4399-408, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22712914

RESUMEN

An acoustic method can provide a noninvasive, efficient and full-field reconstruction of aerodynamic fields in a furnace. A simple yet reasonable model is devised for reconstruction of a velocity field in a cross section of a tangential furnace from acoustic measurements based on typical physical characteristics of the field. The solenoidal component of the velocity field is modeled by a curved surface, derived by rotating a curve of Gaussian distribution, determined by six characteristic parameters, while the nonrotational component is governed by a priori knowledge. Thus the inverse problem is translated into determination of the characteristic parameters using a set of acoustic projection data. First numerical experiments were undertaken to simulate the acoustic measurement, so as to preliminarily validate the effectiveness of the model. Based on this, physical experiments under different operating conditions were performed in a pilot-scale setup to provide a further test. Hot-wire anemometry and strip floating were applied to compare with acoustic measurements. The acoustic measurements provided satisfactory consistency with both of these approaches. Nevertheless, for a field with a relatively large magnitude of air velocities, the acoustic measurement can give more reliable reconstructions. Extension of the model to measurements of hot tangential furnaces is also discussed.

6.
Appl Opt ; 50(21): 3924-36, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21772376

RESUMEN

A tridirectional large lateral shearing displacement interferometric system has been proposed and used to reconstruct the temperature field of a quasi-axisymmetric diffused ethylene flame in two-dimensional (2D) and three-dimensional (3D) hypotheses. In comparison with the thermocouple results, the 2D reconstructed results affords a quantitative analysis with an average discrepancy between 20 and 40 K in the full field, except in the closer part inside the peak temperature location where a high soot volume fraction exists. The 3D reconstructed results affords qualitative analysis and exhibits some asymmetrical characters, but an obvious error occurs at 1 cm height where it is not suitable to use the universal correction coefficient.

7.
J Environ Sci (China) ; 17(2): 305-8, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16295911

RESUMEN

The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.


Asunto(s)
Algoritmos , Carbón Mineral , Centrales Eléctricas/instrumentación , Centrales Eléctricas/métodos , Temperatura , Simulación por Computador , Modelos Lineales
8.
Ultrasonics ; 52(5): 643-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22316528

RESUMEN

Thermal effects greatly influence the optical properties of the acousto-optic deflectors (AODs). Thermal analysis plays an important role in modern AOD design. However, the lack of an effective method of analysis limits the prediction in the thermal performance. In this paper, we propose a finite element analysis model to analyze the thermal effects of a TeO(2)-based AOD. Both transducer heating and acoustic absorption are considered as thermal sources. The anisotropy of sound propagation is taken into account for determining the acoustic absorption. Based on this model, a transient thermal analysis is employed using ANSYS software. The spatial temperature distributions in the crystal and the temperature changes over time are acquired. The simulation results are validated by experimental results. The effect of heat source and heat convection on temperature distribution is discussed. This numerical model and analytical method of thermal analysis would be helpful in the thermal design and practical applications of AODs.


Asunto(s)
Acústica , Óptica y Fotónica , Conductividad Térmica , Termografía/métodos , Simulación por Computador , Análisis de Elementos Finitos , Modelos Teóricos , Programas Informáticos , Temperatura , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA