Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(19): e2121244119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35512102

RESUMEN

Sepsis, septic shock, and their sequelae are the leading causes of death in intensive care units, with limited therapeutic options. Disease resistance and tolerance are two evolutionarily conserved yet distinct defense strategies that protect the host against microbial infection. Here, we report that taurolidine administered at 6 h before septic challenge led to strong protection against polymicrobial sepsis by promoting both host resistance and disease tolerance characterized by accelerated bacterial clearance, ameliorated organ damage, and diminished vascular and gut permeability. Notably, taurolidine administered at 6 h after septic challenge also rescued mice from sepsis-associated lethality by enhancing disease tolerance to tissue and organ injury. Importantly, this in vivo protection afforded by taurolidine depends on an intact autophagy pathway, as taurolidine protected wild-type mice but was unable to rescue autophagy-deficient mice from microbial sepsis. In vitro, taurolidine induced light chain 3-associated phagocytosis in innate phagocytes and autophagy in vascular endothelium and gut epithelium, resulting in augmented bactericidal activity and enhanced cellular tolerance to endotoxin-induced damage in these cells. These results illustrate that taurolidine-induced autophagy augments both host resistance and disease tolerance to bacterial infection, thereby conferring protection against microbial sepsis.


Asunto(s)
Sepsis , Tiadiazinas , Animales , Autofagia , Ratones , Fagocitosis , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Taurina/análogos & derivados , Tiadiazinas/farmacología
2.
BMC Geriatr ; 24(1): 630, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048949

RESUMEN

BACKGROUND: Mobility limitations (e.g., using wheelchair) have been closely linked to diminished functional independence and quality of life in older adults. The regulation of mobility is pertaining to multiple neurophysiologic and sociodemographic factors. We here aimed to characterize the relationships of these factors to the risk of restricted mobility in older adults. METHODS: In this longitudinal study, 668 older adults with intact mobility at baseline completed the baseline assessments of clinical characteristics, cognitive function, sleep quality, activities of daily living (ADL), walking performance, beat-to-beat blood pressure, and structural MRI of the brain. Then 506 of them (mean age = 70.7 ± 7.5 years) responded to the follow-up interview on the mobility limitation (as defined by if using wheelchair, cane, or walkers, or being disabled and lying on the bed) after 18 ± 3.5 months. Logistic regression analyses were performed to examine the relationships between the baseline characteristics and the follow-up mobility restriction. RESULTS: At baseline, compared to intact-mobility group (n = 475), restricted-mobility group (n = 31) were older, with lower score of ADL and the Montreal Cognitive Assessment (MoCA), greater score of Pittsburgh Sleep Quality Index (PSQI), poorer cardio- and cerebral vascular function, and slower walking speeds (ps < 0.05). The logistic regression analysis demonstrated that participants who were with history of falls, uncontrolled-hypertension, and/or greater Fazekas scale (odds ratios (ORs):1.3 ~ 13.9, 95% confidence intervals (CIs) = 1.1 ~ 328.2), walked slower, and/or with lower ADL score (ORs: 0.0026 ~ 0.9; 95%CI: 0.0001 ~ 0.99) at baseline, would have significantly greater risk of restricted mobility (p < 0.05; VIFs = 1.2 ~ 1.9). CONCLUSIONS: These findings provide novel profile of potential risk factors, including vascular characteristics, psycho-cognitive and motor performance, for the development of restricted mobility in near future in older adults, ultimately helping the design of appropriate clinical and rehabilitative programs for mobility in this population.


Asunto(s)
Actividades Cotidianas , Limitación de la Movilidad , Humanos , Anciano , Masculino , Femenino , Estudios Longitudinales , Factores de Riesgo , Actividades Cotidianas/psicología , Anciano de 80 o más Años , Evaluación Geriátrica/métodos
3.
J Fish Biol ; 102(2): 380-394, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36371656

RESUMEN

The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching.


Asunto(s)
Opsinas , Takifugu , Animales , Opsinas de Bastones , Retina , Epitelio
4.
Pediatr Res ; 92(2): 541-548, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34725501

RESUMEN

BACKGROUND: To determine the associations of urinary CXC motif chemokine 10 (uCXCL10) with AKI, sepsis and pediatric intensive care unit (PICU) mortality in critically ill children, as well as its predictive value for the aforementioned issues. METHODS: Urinary CXCL10 levels were serially measured in 342 critically ill children during the first week after PICU admission. AKI diagnosis was based on the criteria of KDIGO. Sepsis was diagnosed according to the surviving sepsis campaign's international guidelines for children. RESULTS: Fifty-two (15.2%) children developed AKI, 132 (38.6%) were diagnosed with sepsis, and 30 (12.3%) died during the PICU stay. Both the initial and peak values of uCXCL10 remained independently associated with AKI, sepsis, septic AKI and PICU mortality. The AUCs of the initial uCXCL10 for predicting AKI, sepsis, septic AKI and PICU mortality were 0.63 (0.53-0.72), 0.62 (0.56-0.68), 0.75 (0.64-0.87) and 0.77 (0.68-0.86), respectively. The AUCs for prediction by using peak uCXCL10 were as follows: AKI 0.65 (0.56-0.75), sepsis 0.63 (0.57-0.69), septic AKI 0.76 (0.65-0.87) and PICU mortality 0.84 (0.76-0.91). CONCLUSIONS: Urinary CXCL10 is independently associated with AKI and sepsis and may be a potential indicator of septic AKI and PICU mortality in critically ill children. IMPACT: Urinary CXC motif chemokine 10 (uCXCL10), as an inflammatory mediator, has been proposed to be a biomarker for AKI in a specific setting. AKI biomarkers are often susceptible to confounding factors, limiting their utility as a specific biomarker, especially in heterogeneous population. This study revealed that uCXCL10 levels are independently associated with increased risk for AKI, sepsis, septic AKI and PICU mortality. A higher uCXCL10 may be predictive of septic AKI and PICU mortality in critically ill children.


Asunto(s)
Lesión Renal Aguda , Sepsis , Lesión Renal Aguda/epidemiología , Biomarcadores/orina , Quimiocina CXCL10 , Quimiocinas , Niño , Enfermedad Crítica , Humanos , Mediadores de Inflamación , Estudios Prospectivos , Sepsis/complicaciones , Sepsis/diagnóstico
5.
BMC Pediatr ; 22(1): 452, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897053

RESUMEN

BACKGROUND: Pneumonia is a serious problem that threatens the health of newborns. This study aimed to investigate the clinical characteristics of hospitalized term and preterm infants with community-acquired viral pneumonia. METHODS: This was a retrospective analysis of cases of community-acquired viral pneumonia in the Neonatal Department. Nasopharyngeal aspirate (NPA) samples were collected for pathogen detection, and clinical data were collected. We analysed pathogenic species and clinical characteristics among these infants. RESULTS: RSV is the main virus in term infants, and parainfluenza virus (PIV) 3 is the main virus in preterm infants. Patients infected with PIV3 were more susceptible to coinfection with bacteria than those with respiratory syncytial virus (RSV) infection (p < 0.05). Preterm infants infected with PIV3 were more likely to be coinfected with bacteria than term infants (p < 0.05), mainly gram-negative bacteria (especially Klebsiella pneumonia). Term infants with bacterial infection were more prone to fever, cyanosis, moist rales, three concave signs, elevated C-reactive protein (CRP) levels, respiratory failure and the need for higher level of oxygen support and mechanical ventilation than those with simple viral infection (p < 0.05). The incidence of hyponatremia in neonatal community-acquired pneumonia (CAP) was high. CONCLUSIONS: RSV and PIV3 were the leading causes of neonatal viral CAP. PIV3 infection is the main cause of viral CAP in preterm infants, and these individuals are more likely to be coinfected with bacteria than term infants, mainly gram-negative bacteria. Term infants with CAP coinfected with bacteria were more likely to have greater disease severity than those with single viral infections.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía Viral , Infecciones por Virus Sincitial Respiratorio , Virosis , Infecciones Comunitarias Adquiridas/epidemiología , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Neumonía Viral/complicaciones , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/epidemiología , Estudios Retrospectivos
6.
J Am Chem Soc ; 143(29): 10860-10864, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34279083

RESUMEN

Chiral chromophores and their ordered assemblies are intriguing for yielding circularly polarized luminescence (CPL) and exploring intrinsic structure-light emission relationships. With the extensively studied chiral organic molecules and inorganic nanoparticle assemblies for the amplified CPL, the assemblies of copper halide hybrid clusters have attracted intensive attention due to their potential efficient CPL. Here, we report robust chiral phosphine-copper iodide hybrid clusters and their layered assemblies in crystalline states for amplified CPL. We reveal that the intermolecular interactions endow the clusters with the capability of assembling into chiral crystalline CPL materials, including hexagonal platelet-shaped microcrystals (glum ≈ 9.5 × 10-3) and highly oriented crystalline films (glum ≈ 5 × 10-3). Owing to the high crystalline feature of the thin film, we demonstrate an electroluminescent device with bright electroluminescence (1200 cd m-2).

7.
BMC Cancer ; 20(1): 665, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32677906

RESUMEN

BACKGROUND: Based on its low toxicity, arginine starvation therapy has the potential to cure malignant tumors that cannot be treated surgically. The Arginine deiminase (ADI) gene has been identified to be an ideal cancer-suppressor gene. ADI expressed in the cytosol displays higher oncolytic efficiency than ADI-PEG20 (Pegylated Arginine Deiminase by PEG 20,000). However, it is still unknown whether cytosolic ADI has the same mechanism of action as ADI-PEG20 or other underlying cellular mechanisms. METHODS: The interactions of ADI with other protein factors were screened by yeast hybrids, and verified by co-immunoprecipitation and immunofluorescent staining. The effect of ADI inhibiting the ferritin light-chain domain (FTL) in mitochondrial damage was evaluated by site-directed mutation and flow cytometry. Control of the mitochondrial apoptosis pathway was analyzed by Western Blotting and real-time PCR experiments. The effect of p53 expression on cancer cells death was assessed by siTP53 transfection. Chromatin autophagy was explored by immunofluorescent staining and Western Blotting. RESULTS: ADI expressed in the cytosol inhibited the activity of cytosolic ferritin by interacting with FTL. The inactive mutant of ADI still induced apoptosis in certain cell lines of ASS- through mitochondrial damage. Arginine starvation also generated an increase in the expression of p53 and p53AIP1, which aggravated the cellular mitochondrial damage. Chromatin autophagy appeared at a later stage of arginine starvation. DNA damage occurred along with the entire arginine starvation process. Histone 3 (H3) was found in autophagosomes, which implies that cancer cells attempted to utilize the arginine present in histones to survive during arginine starvation. CONCLUSIONS: Mitochondrial damage is the major mechanism of cell death induced by cytosolic ADI. The process of chromatophagy does not only stimulate cancer cells to utilize histone arginine but also speeds up cancer cell death at a later stage of arginine starvation.


Asunto(s)
Cromatina/metabolismo , Ferritinas/metabolismo , Hidrolasas/metabolismo , Mitocondrias/patología , Neoplasias/patología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Arginina/metabolismo , Autofagia/efectos de los fármacos , Autofagia/fisiología , Línea Celular Tumoral , Citosol/metabolismo , Histonas/metabolismo , Humanos , Hidrolasas/farmacología , Hidrolasas/uso terapéutico , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico
8.
J Immunol ; 200(5): 1771-1780, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343555

RESUMEN

High mobility group box 1 (HMGB1), a chromatin-binding nuclear protein, plays a critical role in sepsis by acting as a key "late-phase" inflammatory mediator. Integrin CD11b is essential for inflammatory cell activation and migration, thus mediating inflammatory responses. However, it is unclear whether CD11b participates in the development of sepsis. In this study, we report that CD11b contributes to LPS-induced endotoxin shock and microbial sepsis, as antagonism of CD11b with the CD11b blocking Ab or CD11b inhibitor Gu-4 protects mice against LPS- and microbial sepsis-related lethality, which is associated with significantly diminished serum HMGB1 levels. Consistent with this, CD11b-deficient mice were more resistant to microbial sepsis with a much lower serum HMGB1 level compared with wild-type mice. Pharmacological blockage and genetic knockdown/knockout of CD11b in murine macrophages hampered LPS-stimulated HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, silencing CD11b interrupted the interaction of HMGB1 with either a nuclear export factor chromosome region maintenance 1 or classical protein kinase C and inhibited classical protein kinase C-induced HMGB1 phosphorylation, the potential underlying mechanism(s) responsible for CD11b blockage-induced suppression of HMGB1 nucleocytoplasmic translocation and subsequent extracellular release. Thus, our results highlight that CD11b contributes to the development of sepsis, predominantly by facilitating nucleocytoplasmic translocation and active release of HMGB1.


Asunto(s)
Antígeno CD11b/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteína HMGB1/metabolismo , Transporte de Proteínas/fisiología , Sepsis/metabolismo , Choque Séptico/metabolismo , Animales , Línea Celular , Integrinas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Biochem Biophys Res Commun ; 503(3): 1773-1779, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30064906

RESUMEN

Sepsis, a systemic inflammatory response caused by infection or injury, is still one of the most important causes of death in clinical patients. The ongoing search for the pathogenesis of sepsis and novel therapeutic methods are highly urgent. In this study, we hypothesized that KPT330, a potent and specific small molecule inhibitor of CRM1, could reduce inflammation and attenuate the severity of sepsis. In LPS-induced sepsis model in vivo, administration of KPT330 increased survival rate and ameliorated LPS-induced lung injury, with suppressed levels of TNF-α, IL-6 and HMGB1 in the circulation and decreased macrophage and PMN subpopulations in peritoneal cavity. In vitro investigations showed that KPT330 dose-dependently inhibited LPS-triggered proinflammatory cytokines production including TNF-α, IL-6 and HMGB1 in macrophages. Furthermore, KPT330 treatment significantly suppressed TNF-α and IL-6 mRNA expression and inhibited HMGB1 necleocytoplasmic translocation by inhibiting CRM1 distribution. Moreover, the mechanism analysis demonstrated that KPT330 exerted anti-inflammation effects by inhibiting the production of pro-inflammatory cytokines through suppressing activation of NF-κB and p38 signaling. Thus, pharmacologic stimulation of KPT330 may present a promising therapeutic strategy for sepsis.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Hidrazinas/farmacología , Carioferinas/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Choque Séptico/prevención & control , Triazoles/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hidrazinas/química , Carioferinas/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/metabolismo , Choque Séptico/inducido químicamente , Relación Estructura-Actividad , Triazoles/química , Proteína Exportina 1
10.
Biochem Biophys Res Commun ; 505(4): 1032-1037, 2018 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30314693

RESUMEN

Necrotizing enterocolitis (NEC) remains one of the leading causes of death in neonatal infants and new therapeutic strategies for NEC are urgently required. The immunomodulatory agent FTY720 has been shown to have protective effects in various inflammatory diseases. In this study, we hypothesized that treatment with FTY720 confers protection against experimental NEC. Experimental NEC was induced in five-day-old C57BL/6 neonatal mice by hyperosmolar formula feeding plus hypoxia and lipopolysaccharide (LPS) challenges. Induction of NEC resulted in substantial weight loss and high mortality compared to the control group, whereas FTY720 treatment significantly attenuated weight loss and improved survival in NEC-challenged neonatal mice. FTY720 treatment strongly ameliorated NEC-induced intestinal injury with reduced apoptosis and up-regulation of intestinal barrier proteins in the ileal tissues. Furthermore, FTY720 treatment abrogated NEC-initiated intestinal and systemic inflammation with markedly diminished inflammatory cytokines and chemokines. Moreover, FTY720 treatment suppressed NEC-activated CXCL5/CXCR2 axis with down-regulated expression of CXCL5 and CXCR2 at both mRNA and protein levels. Thus, we demonstrate that FTY720 protects neonatal mice against NEC-associated lethality by ameliorating intestinal injury and attenuating inflammation, possibly via its down-regulation of NEC-induced activation of intestinal CXCL5/CXCR2 axis.


Asunto(s)
Quimiocina CXCL5/biosíntesis , Enterocolitis Necrotizante/tratamiento farmacológico , Clorhidrato de Fingolimod/farmacología , Inflamación/tratamiento farmacológico , Intestinos/efectos de los fármacos , Intestinos/lesiones , Receptores de Interleucina-8B/biosíntesis , Animales , Quimiocina CXCL5/metabolismo , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/metabolismo , Femenino , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Interleucina-8B/metabolismo
11.
Int J Mol Sci ; 16(1): 1266-92, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25574601

RESUMEN

Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.


Asunto(s)
Apoptosis/efectos de los fármacos , Azepinas/toxicidad , Proteínas de Ciclo Celular/antagonistas & inhibidores , Leucemia Mieloide Aguda/patología , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirimidinas/toxicidad , Azepinas/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Niño , Preescolar , Análisis por Conglomerados , Fragmentación del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Células HL-60 , Humanos , Células K562 , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Masculino , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pirimidinas/química , Células Tumorales Cultivadas , Regulación hacia Arriba/efectos de los fármacos , Quinasa Tipo Polo 1
12.
Front Public Health ; 12: 1341266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38362223

RESUMEN

Strong epidemiological evidence has shown that early life adversity (ELA) has a profound negative impact on health in adulthood, including an increased risk of cardiovascular disease, the leading cause of death worldwide. Here, we review cohort studies on the effects of ELA on cardiovascular outcomes and the possible underlying mechanisms. In addition, we summarize relevant studies in rodent models of ELA. This review reveals that the prevalence of ELA varies between regions, time periods, and sexes. ELA increases cardiovascular health risk behaviors, susceptibility to mental illnesses, and neuroendocrine and immune system dysfunction in humans. Rodent models of ELA have been developed and show similar cardiovascular outcomes to those in humans but cannot fully replicate all ELA subtypes. Therefore, combining cohort and rodent studies to further investigate the mechanisms underlying the association between ELA and cardiovascular diseases may be a feasible future research strategy.


Asunto(s)
Experiencias Adversas de la Infancia , Enfermedades Cardiovasculares , Trastornos Mentales , Humanos , Enfermedades Cardiovasculares/epidemiología , Sistema Inmunológico , Conducta Sexual
13.
Aging Cell ; 23(1): e13943, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37615223

RESUMEN

The fluctuations in resting-state beat-to-beat blood pressure (BP) are physiologically complex, and the degree of such BP complexity is believed to reflect the multiscale regulation of this critical physiologic process. Hypertension (HTN), one common age-related condition, is associated with altered BP regulation and diminished system responsiveness to perturbations such as orthostatic change. We thus aimed to characterize the impact of HTN on resting-state BP complexity, as well as the relationship between BP complexity and both adaptive capacity and underlying vascular characteristics. We recruited 392 participants (age: 60-91 years), including 144 that were normotensive and 248 with HTN (140 controlled- and 108 uncontrolled-HTN). Participants completed a 10-min continuous finger BP recording during supine rest, then underwent measures of lying-to-standing BP change, arterial stiffness (i.e., brachial-ankle pulse wave velocity), and endothelial function (i.e., flow-mediated vasodilation). The complexity of supine beat-to-beat systolic (SBP) and diastolic (DBP) BP was quantified using multiscale entropy. Thirty participants with HTN (16 controlled-HTN and 14 uncontrolled-HTN) exhibited orthostatic hypotension. SBP and DBP complexity was greatest in normotensive participants, lower in those with controlled-HTN, and lowest in those in uncontrolled-HTN (p < 0.0005). Lower SBP and DBP complexity correlated with greater lying-to-standing decrease in SBP and DBP level (ß = -0.33 to -0.19, p < 0.01), greater arterial stiffness (ß = -0.35 to -0.18, p < 0.01), and worse endothelial function (ß = 0.17-0.22, p < 0.01), both across all participants and within the control- and uncontrolled-HTN groups. These results suggest that in older adults, BP complexity may capture the integrity of multiple interacting physiologic mechanisms that regulate BP and are important to cardiovascular health.


Asunto(s)
Sistema Cardiovascular , Hipertensión , Humanos , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Presión Sanguínea/fisiología , Índice Tobillo Braquial , Análisis de la Onda del Pulso
14.
Aquat Toxicol ; 273: 107022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032423

RESUMEN

Estrogen plays a pivotal role in the early stage of sex differentiation in teleost. However, the underlying mechanisms of estrogen-induced feminization process are still needed for further clarification. Here, the comparative analysis of whole-transcriptome RNA sequencing was conducted between 17beta-Estradiol induced feminized XY (E-XY) gonads and control gonads (C) in Takifugu rubripes. A total of 57 miRNAs, 65 lncRNAs, and 4 circRNAs were found to be expressed at lower levels in control-XY (C-XY) than that in control-XX (C-XX), and were up-regulated in XY during E2-induced feminization process. The expression levels of 24 miRNAs, and 55 lncRNAs were higher in C-XY than that in C-XX, and were down-regulated in E2-treated XY. Furthermore, a correlation analysis was performed between miRNA-seq and mRNA-seq data. In C-XX/C-XY, 114 differential expression (DE) miRNAs were predicted to target to 904 differential expression genes (DEGs), while in C-XY/E-XY, 226 DEmiRNAs were predicted to target to 2,048 DEGs. In C-XX/C-XY, and C-XY/E-XY, KEGG pathway enrichment analysis showed that those targeted genes were mainly enriched in MAPK signaling, calcium signaling, steroid hormone biosynthesis and ovarian steroidogenesis pathway. Additionally, the competitive endogenous RNA (ceRNA) regulatory network was constructed by 24 miRNAs, 21 lncRNAs, 4 circRNAs and 5 key sex-related genes. These findings suggested that the expression of critical genes in sex differentiation were altered in E2-treated XY T. rubripes may via the lncRNA-miRNA-mRNA regulation network to facilitate the differentiation and maintenance of ovaries. Our results provide a new insight into the comprehensive understanding of the effects of estrogen signaling pathways on sex differentiation in teleost gonads.


Asunto(s)
Estrógenos , Gónadas , MicroARNs , Takifugu , Animales , Takifugu/genética , Femenino , Masculino , Estrógenos/toxicidad , Gónadas/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Estradiol , Feminización/inducido químicamente , Feminización/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , Diferenciación Sexual/efectos de los fármacos , Diferenciación Sexual/genética , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
15.
ACS Nano ; 18(4): 3814-3825, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38230632

RESUMEN

Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.


Asunto(s)
Electrones , Peroxidasas , Peroxidasa , Peroxidasa de Rábano Silvestre , Catálisis
16.
Cell Death Discov ; 10(1): 345, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085218

RESUMEN

Necrotizing enterocolitis (NEC) involves intestinal epithelial damage and inflammatory response and is associated with high morbidity and mortality in infants. To improve therapeutic prospects, elucidating underlying molecular mechanisms of intestinal epithelial damage during NEC is of the essence. Poly (ADP-ribose) polymerase 1 (PARP1)-dependent parthanatos is a programmed inflammatory cell death. In the present study, the presence of parthanatos-associated proteins PARP1 and poly (ADP-ribose) (PAR), along with high expression of DNA damage-associated biomarkers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and phosphorylation of histone H2AX (γH2AX), were discovered in the intestinal tissues of NEC infants. Additionally, the upregulated expression of PARP1 and PAR in NEC intestinal tissues correlated distinctly with clinical indices indicative of NEC incidence and severity. Furthermore, we demonstrated that inhibiting the expression of parthanatos-associated proteins, by either pharmacological blockage using 3-aminobenzamide (3-AB), an inhibitor of PARP1, or genetic knockout using Parp1-deficient mice, resulted in substantial improvements in both histopathological severity scores associated with intestinal injury and inflammatory reactions. Moreover, in an in vitro NEC model, reactive oxygen species (ROS)-induced DNA damage promoted the formation of PAR and nuclear translocation of apoptosis-inducing factor (AIF), thus activating PARP1-dependent parthanatos in Caco-2 cells and human intestinal organoids. Our work verifies a previously unexplored role for parthanatos in intestinal epithelial damage during NEC and suggests that inhibition of parthanatos may serve as a potential therapeutic strategy for intervention of NEC.

17.
Adv Sci (Weinh) ; : e2403934, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225387

RESUMEN

The overactivated immune cells in the infectious lesion may lead to irreversible organ damages under severe infections. However, clinically used immunosuppressive anti-inflammatory drugs will usually disturb immune homeostasis and conversely increase the risk of infections. Regulating the balance between anti-inflammation and anti-infection is thus critical in treating certain infectious diseases. Herein, considering that hydrogen peroxide (H2O2), myeloperoxidase (MPO), and neutrophils are upregulated in the inflammatory microenvironment and closely related to the severity of appendectomy patients, an inflammatory-microenvironment-responsive nanomedicine is designed by using poly(lactic-co-glycolic) acid (PLGA) nanoparticles to load chlorine E6 (Ce6), a photosensitizer, and luminal (Lum), a chemiluminescent agent. The obtained Lum/Ce6@PLGA nanoparticles, being non-toxic within normal physiological environment, can generate cytotoxic single oxygen via bioluminescence resonance energy transfer (BRET) in the inflammatory microenvironment with upregulated H2O2 and MPO, simultaneously killing pathogens and excessive inflammatory immune cells in the lesion, without disturbing immune homeostasis. As evidenced in various clinically relevant bacterial infection models and virus-induced pneumonia, Lum/Ce6@PLGA nanoparticles appeared to be rather effective in controlling both infection and inflammation, resulting in significantly improved animal survival. Therefore, the BRET-based nanoparticles by simultaneously controlling infections and inflammation may be promising nano-therapeutics for treatment of severe infectious diseases.

18.
Genome Biol ; 25(1): 102, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641822

RESUMEN

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II , Humanos , Cromatina , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
19.
Appl Microbiol Biotechnol ; 97(19): 8547-58, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23324801

RESUMEN

Antagonists of tumor necrosis factor alpha (TNFa) have revolutionized the treatment of selected inflammatory diseases. Recombination Camelidae variable heavy-chain domain-only TNFa antibodies (anti-TNF-VHH) have been developed to antagonize the action of human and murine TNFa. Here, we describe a strategy to obtain functional covalent dimer anti-TNF-VHH molecules with the C-terminal fusion of human IgG1 Fc domain named anti-TNF-VHH-Fc. The resulting fusion proteins were separately expressed by use of the pET28a vector in Escherichia coli ((Ec)) strain BL21 and the pPICZaA vector in Pichia pastoris ((Pp)) strain GS115, then purified by protein A affinity resin. Fc-engineered anti-(Ec)TNF-VHH-Fc was about 40 kDa and anti-(Pp)TNF-VHH-Fc was about 43 kDa. Monomeric VHH was also cloned and expressed in E. coli strain BL21, with the molecular weight of about 18 kDa. Enzyme-linked immunosorbent assay and L929 cell cytotoxicity assay demonstrated that the fusion protein anti-(Pp)TNF-VHH-Fc blocked TNFa activity more effectively than either anti-(Ec)TNF-VHH-Fc or monomeric anti-(Ec)TNF-VHH protein. We suggest that efficient disulfide bond formation using the P. pastoris expression system improves the covalent dimer anti-TNF-VHH-Fc neutralizing activity.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos de Dominio Único/inmunología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Camelus , Humanos , Ratones , Peso Molecular , Pichia/genética , Pichia/metabolismo , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/aislamiento & purificación
20.
Gene ; 882: 147641, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37460000

RESUMEN

Estradiol-17ß (E2) and aromatase inhibitor (AI) exposure can change the phenotypic sex of fish gonads. To investigated whether alterations in DNA methylation is involved in this process, the level of genome-wide DNA methylation in Takifugu rubripes gonads was quantitatively analyzed during the E2-induced feminization and AI-induced masculinization processes in this study. The methylation levels of the total cytosine (C) in control-XX(C-XX), control-XY (C-XY), E2-treated-XY (E-XY) and AI-treated-XX (AI-XX) were 9.11%, 9.19%, 8.63% and 9.23%, respectively. In the C-XX vs C-XY comparison, 4,196 differentially methylated regions (DMRs) overlapped with the gene body of 2,497 genes and 608 DMRs overlapped with the promoter of 575 genes. In the E-XY vs C-XY comparison, 6,539 DMRs overlapped with the gene body of 3,416 genes and 856 DMRs overlapped with the promoter of 776 genes. In the AI-XX vs C-XX comparison, 2,843 DMRs overlapped with the gene body of 1,831 genes and 461 DMRs overlapped with the promoter of 421 genes. Gonadal genomic methylation mainly occurred at CG sites and the genes that overlapped with DMRs on CG context were most enriched in the signaling pathways related to gonad differentiation, such as the Wnt, TGF-ß, MAPK, CAM and GnRH pathways. The DNA methylation levels of steroid synthesis genes and estrogen receptor genes promoter or gene body were negative correlated with their expression. After bisulfite sequencing verification, the DNA methylation level of the amhr2 promoter in XY was increased after E2 treatment, which consistent with the data from the genome-wide DNA methylation sequencing. In C-XY group, the expression of amhr2 was significantly higher than that in E-XY (p < 0.05). Additionally, dnmt1, which is responsible for methylation maintenance, expressed at similar level in four groups (p > 0.05). dnmt3, tet2, and setd1b, which were responsible for methylation modification, expressed at significantly higher levels in E-XY compared to the C-XY (p < 0.05). Dnmt3 and tet2 were expressed at significantly higher levels in AI-XX than that in C-XX (p < 0.05). These results indicated that E2 and AI treatment lead to the aberrant genome-wide DNA methylation level and expression level of dnmt3, tet2, and setd1b in T. rubripes gonad.


Asunto(s)
Inhibidores de la Aromatasa , Metilación de ADN , Animales , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/metabolismo , Takifugu/genética , Diferenciación Sexual/genética , Gónadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA