Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 567(7747): 257-261, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814741

RESUMEN

Hepatocellular carcinoma is the third leading cause of deaths from cancer worldwide. Infection with the hepatitis B virus is one of the leading risk factors for developing hepatocellular carcinoma, particularly in East Asia1. Although surgical treatment may be effective in the early stages, the five-year overall rate of survival after developing this cancer is only 50-70%2. Here, using proteomic and phospho-proteomic profiling, we characterize 110 paired tumour and non-tumour tissues of clinical early-stage hepatocellular carcinoma related to hepatitis B virus infection. Our quantitative proteomic data highlight heterogeneity in early-stage hepatocellular carcinoma: we used this to stratify the cohort into the subtypes S-I, S-II and S-III, each of which has a different clinical outcome. S-III, which is characterized by disrupted cholesterol homeostasis, is associated with the lowest overall rate of survival and the greatest risk of a poor prognosis after first-line surgery. The knockdown of sterol O-acyltransferase 1 (SOAT1)-high expression of which is a signature specific to the S-III subtype-alters the distribution of cellular cholesterol, and effectively suppresses the proliferation and migration of hepatocellular carcinoma. Finally, on the basis of a patient-derived tumour xenograft mouse model of hepatocellular carcinoma, we found that treatment with avasimibe, an inhibitor of SOAT1, markedly reduced the size of tumours that had high levels of SOAT1 expression. The proteomic stratification of early-stage hepatocellular carcinoma presented in this study provides insight into the tumour biology of this cancer, and suggests opportunities for personalized therapies that target it.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Terapia Molecular Dirigida/tendencias , Proteómica , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Procesos de Crecimiento Celular , Movimiento Celular , Virus de la Hepatitis B/patogenicidad , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estadificación de Neoplasias , Pronóstico , Esterol O-Aciltransferasa/genética
2.
Cell Mol Life Sci ; 80(6): 148, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37178259

RESUMEN

Mutations in GJB2 (Gap junction protein beta 2) are the most common genetic cause of non-syndromic hereditary deafness in humans, especially the 35delG and 235delC mutations. Owing to the homozygous lethality of Gjb2 mutations in mice, there are currently no perfect mouse models carrying Gjb2 mutations derived from patients for mimicking human hereditary deafness and for unveiling the pathogenesis of the disease. Here, we successfully constructed heterozygous Gjb2+/35delG and Gjb2+/235delC mutant mice through advanced androgenic haploid embryonic stem cell (AG-haESC)-mediated semi-cloning technology, and these mice showed normal hearing at postnatal day (P) 28. A homozygous mutant mouse model, Gjb235delG/35delG, was then generated using enhanced tetraploid embryo complementation, demonstrating that GJB2 plays an indispensable role in mouse placenta development. These mice exhibited profound hearing loss similar to human patients at P14, i.e., soon after the onset of hearing. Mechanistic analyses showed that Gjb2 35delG disrupts the function and formation of intercellular gap junction channels of the cochlea rather than affecting the survival and function of hair cells. Collectively, our study provides ideal mouse models for understanding the pathogenic mechanism of DFNB1A-related hereditary deafness and opens up a new avenue for investigating the treatment of this disease.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Humanos , Ratones , Animales , Conexinas/genética , Conexina 26/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Audición
3.
Mol Ther ; 30(1): 105-118, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34174443

RESUMEN

Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.


Asunto(s)
Edición Génica , Pérdida Auditiva , Animales , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Audición , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Humanos , Ratones , ARN Guía de Kinetoplastida
4.
BMC Pulm Med ; 20(1): 233, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867740

RESUMEN

BACKGROUND: Lower respiratory tract infection (LRIs) is very common both in terms of community-acquired infection and hospital-acquired infection. Sputum and bronchoalveolar lavage fluid (BALF) are the most important specimens obtained from patients with LRI. The choice of antibiotic with which to treat LRI usually depends on the antimicrobial sensitivity of bacteria isolated from sputum and BALF. However, differences in the antimicrobial sensitivity of pathogens isolated from sputum and BALF have not been evaluated. METHODS: A retrospective study was conducted to analyze the differences between sputum and BALF samples in terms of pathogen isolation and antimicrobial sensitivity in hospitalized patients with LRI. RESULTS: Between 2013 and 2015, quality evaluation of sputum samples was not conducted before performing sputum culture; however, between 2016 and 2018, quality evaluation of sputum samples was conducted first, and only quality-assured samples were cultured. The numbers of sputum and BALF in 2013-2015 were 15,549 and 1671, while those in 2016-2018 were 12,055 and 3735, respectively. The results of pathogen culture showed that Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Hemophilus influenzae, Escherichia coli, Stenotrophomonas maltophilia, and Streptococcus pneumoniae were in the top ten pathogens isolated from sputum and BALF. An antimicrobial susceptibility test showed that the susceptibility of BALF isolates to most antibiotics was higher compared with the susceptibility of sputum isolates, especially after quality control of sputum samples (2016-2018). CONCLUSIONS: Our findings suggest that caution is needed in making therapeutic choices for patients with LRI when using antimicrobial sensitivity results from sputum isolates as opposed to BALF isolates.


Asunto(s)
Infecciones Bacterianas/microbiología , Líquido del Lavado Bronquioalveolar/microbiología , Pruebas de Sensibilidad Microbiana , Sistema Respiratorio/microbiología , Esputo/microbiología , Antibacterianos/uso terapéutico , Infecciones Bacterianas/epidemiología , China/epidemiología , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Femenino , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/aislamiento & purificación , Hospitales de Enseñanza , Humanos , Masculino , Estudios Retrospectivos , Staphylococcus aureus/aislamiento & purificación
5.
Nat Commun ; 15(1): 1757, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413612

RESUMEN

Candidalysin, a cytolytic peptide toxin secreted by the human fungal pathogen Candida albicans, is critical for fungal pathogenesis. Yet, its intracellular targets have not been extensively mapped. Here, we performed a high-throughput enhanced yeast two-hybrid (HT-eY2H) screen to map the interactome of all eight Ece1 peptides with their direct human protein targets and identified a list of potential interacting proteins, some of which were shared between the peptides. CCNH, a regulatory subunit of the CDK-activating kinase (CAK) complex involved in DNA damage repair, was identified as one of the host targets of candidalysin. Mechanistic studies revealed that candidalysin triggers a significantly increased double-strand DNA breaks (DSBs), as evidenced by the formation of γ-H2AX foci and colocalization of CCNH and γ-H2AX. Importantly, candidalysin binds directly to CCNH to activate CAK to inhibit DNA damage repair pathway. Loss of CCNH alleviates DSBs formation under candidalysin treatment. Depletion of candidalysin-encoding gene fails to induce DSBs and stimulates CCNH upregulation in a murine model of oropharyngeal candidiasis. Collectively, our study reveals that a secreted fungal toxin acts to hijack the canonical DNA damage repair pathway by targeting CCNH and to promote fungal infection.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Humanos , Ratones , Animales , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Péptidos/metabolismo
6.
Cancer Cell ; 41(11): 1927-1944.e9, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37738973

RESUMEN

Although polymorphic microbiomes have emerged as hallmarks of cancer, far less is known about the role of the intratumor mycobiome as living microorganisms in cancer progression. Here, using fungi-enriched DNA extraction and deep shotgun metagenomic sequencing, we have identified enriched tumor-resident Aspergillus sydowii in patients with lung adenocarcinoma (LUAD). By three different syngeneic lung cancer mice models, we find that A. sydowii promotes lung tumor progression via IL-1ß-mediated expansion and activation of MDSCs, resulting in suppressed activity of cytotoxic T lymphocyte cells and accumulation of PD-1+ CD8+ T cells. This is mediated by IL-1ß secretion via ß-glucan/Dectin-1/CARD9 pathway. Analysis of human samples confirms that enriched A. sydowii is associated with immunosuppression and poor patient outcome. Our findings suggest that intratumor mycobiome, albeit at low biomass, promotes lung cancer progression and could be targeted at the strain level to improve patients with LUAD outcome.


Asunto(s)
Neoplasias Pulmonares , Micobioma , Células Supresoras de Origen Mieloide , Humanos , Animales , Ratones , Neoplasias Pulmonares/genética , Linfocitos T CD8-positivos , Pulmón
7.
Curr Med Sci ; 41(2): 318-322, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33877548

RESUMEN

Serology tests for viral antibodies provide an important tool to support nucleic acid testing for diagnosis of the novel coronavirus disease 2019 (COVID-19) and is useful for documenting previous exposures to SARS-CoV-2, the etiological agent of COVID-19. The sensitivities of the chemiluminescent SARS-CoV-2 IgG/IgM immunoassay were assessed by using serum samples collected from 728 patients testing positive for SARS-CoV-2 RNA. The specificity was evaluated on a panel of 60 serum samples from non-COVID-19 patients with high levels of rheumatoid factor, antinuclear antibody, or antibodies against Epstein-Barr virus (EBV), cytomegalovirus (CMV), mycoplasma pneumonia, human respiratory syncytial virus (RSV), adenovirus, influenza A or influenza B. The imprecision and interference were assessed by adopting the Clinical and Laboratory Standards Institute (CLSI) EP15-A2 and EP7-A2, respectively. Sensitivities between 1 and 65 days after onset of symptoms were 94.4% and 78.7%, for IgG and IgM test, respectively. The sensitivity increased with the time after symptom onset, and rose to the top on the 22nd to 28th days. The total imprecision (CVs) was less than 6.0% for IgG and less than 6.5% for IgM. Limited cross-reactions with antibodies against EBV, CMV, mycoplasma pneumonia, human RSV, adenovirus, influenza A or influenza B were found. These data suggested the chemiluminescent SARS-CoV-2 IgG and IgM, assay with reliable utility and sensitivity, could be used for rapid screening and retrospective surveillance of COVID-19.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/sangre , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/patología , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Mediciones Luminiscentes/métodos , Masculino , Persona de Mediana Edad , ARN Viral/sangre , Estudios Retrospectivos , SARS-CoV-2/patogenicidad , Adulto Joven
9.
Oncol Lett ; 16(4): 4418-4426, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30214576

RESUMEN

Hepatitis B virus (HBV) infection is a risk factor for hepatocellular carcinoma (HCC). HBV X protein (HBx) is an important carcinogen for HBV-induced HCC. When the HBx gene is integrated into the host cell genome, it is difficult to eradicate. The identification of an effective target to inhibit the oncogenic function of HBx is therefore critically important. The present study demonstrated that HBx, particularly truncated HBx, was expressed in several HBV-derived cell lines (e.g., Hep3B and SNU423). By analyzing data from The Cancer Genome Atlas, it was revealed that high expression of high mobility group box 1 (HMGB1) was associated with the process and prognosis of HCC. In vitro experiments confirmed that HBx could regulate the expression of HMGB1 and knockdown of HMGB1 could decrease the ability of HBx to promote cellular proliferation. HBx could also upregulate six transcription factors (GATA binding protein 3, Erb-B2 receptor tyrosine kinase 3, heat shock transcription factor 1, nuclear factor κB subunit 1, TATA-box binding protein and Kruppel-like factor 4), which could directly regulate HMGB1. By analyzing genes that are co-expressed with HMGB1, several signaling pathways associated with the development of HCC were identified. HBx and HMGB1 were revealed to be involved in these pathways, which may be the mechanism by which HBx promotes HCC by regulating HMGB1. These findings suggested that HMGB1 may be an effective target for inhibiting HBV-induced HCC.

10.
Biomed Res Int ; 2017: 9729107, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28326329

RESUMEN

Liver biopsy still remains the gold standard for diagnosing nonalcoholic steatohepatitis (NASH), but with limitations. There is an urgent need to develop noninvasive tests that accurately distinguish NASH from simple steatosis. The purpose of this meta-analysis was to evaluate the diagnostic value of serum biomarkers including cytokeratin 18 (CK-18), fibroblast growth factor 21 (FGF-21), and combined biomarker panel (CBP) in the diagnosis of NAFLD, especially NASH. A total of 25 studies met the inclusion criteria. Pooled sensitivity and specificity values for chosen serum markers for diagnosing NASH are as follows: CK-18 (M30), 0.75 and 0.77; CK-18 (M65), 0.71 and 0.77; FGF-21, 0.62 and 0.78; and CBP, 0.92 and 0.85. CBP demonstrated better accuracy with higher sensitivity and specificity than those tested individually. Furthermore, the AUROC of CBP was 0.94 (95% CI, 0.92-0.96), compared to CK-18 or FGF-21 assay, which showed the most significant ability to distinguish NASH from simple steatosis. The results suggest that increased circulating CK-18 and FGF-21 are associated with NASH and may be used for initial assessment, but not enough. Importantly, CBP is potentially used as accurate diagnostic tools for NASH. Further prospective designed studies are warranted to confirm our findings.


Asunto(s)
Biomarcadores/sangre , Factores de Crecimiento de Fibroblastos/sangre , Queratina-18/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Biopsia , Hígado Graso/patología , Humanos , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología
11.
Mol Med Rep ; 16(2): 1779-1784, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28656252

RESUMEN

The authors previously demonstrated that unconjugated bilirubin (UCB) may inhibit the activities of various digestive proteases, including trypsin and chymotrypsin. The digestive proteases in the lower gut are important in the pathogenesis of inflammatory bowel diseases. The effects of UCB on the inflammation and levels of digestive proteases in feces of rats with colitis have not yet been revealed. The present study investigated the effect of UCB on the inflammatory status and levels of trypsin and chymotrypsin in the feces of rats with trinitrobenzenesulfonic acid (TNBS)­induced colitis. The data indicated that treatment with TNBS resulted in a marked reduction in weight gain, which was significantly alleviated in UCB­treated rats. Furthermore, UCB treatment alleviated the inflammation induced by TNBS, detected via macroscopic damage and microscopic inflammation scores, and pro­inflammatory markers including myeloperoxidase (MPO), tumor necrosis factor (TNF)­α and interleukin (IL)­1ß. Furthermore, rats with colitis demonstrated significant increases in fecal trypsin and chymotrypsin levels, whereas UCB treatment significantly alleviated these increases. A significant positive correlation was additionally revealed among the pro­inflammatory markers (MPO, TNF­α and IL­1ß) and fecal digestive proteases (trypsin and chymotrypsin) in colitis. The results of the present study demonstrated that UCB ameliorated the inflammation and digestive protease increase in TNBS-induced colitis.


Asunto(s)
Bilirrubina/uso terapéutico , Colitis/tratamiento farmacológico , Colitis/enzimología , Endopeptidasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Animales , Bilirrubina/farmacología , Biomarcadores/metabolismo , Quimotripsina/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colon/patología , Citocinas/metabolismo , Digestión/efectos de los fármacos , Heces , Inflamación/patología , Mediadores de Inflamación/metabolismo , Masculino , Ratas Sprague-Dawley , Ácido Trinitrobencenosulfónico , Tripsina/metabolismo , Pérdida de Peso/efectos de los fármacos
12.
PLoS One ; 11(4): e0153023, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27045517

RESUMEN

Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Mutación , Staphylococcus aureus/efectos de los fármacos , Estilbenos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA