Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(42): e2211254119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36227916

RESUMEN

Iridoid monoterpenes, widely distributed in plants and insects, have many ecological functions. While the biosynthesis of iridoids has been extensively studied in plants, little is known about how insects synthesize these natural products. Here, we elucidated the biosynthesis of the iridoids cis-trans-nepetalactol and cis-trans-nepetalactone in the pea aphid Acyrthosiphon pisum (Harris), where they act as sex pheromones. The exclusive production of iridoids in hind legs of sexual female aphids allowed us to identify iridoid genes by searching for genes specifically expressed in this tissue. Biochemical characterization of candidate enzymes revealed that the iridoid pathway in aphids proceeds through the same sequence of intermediates as described for plants. The six identified aphid enzymes are unrelated to their counterparts in plants, conclusively demonstrating an independent evolution of the entire iridoid pathway in plants and insects. In contrast to the plant pathway, at least three of the aphid iridoid enzymes are likely membrane bound. We demonstrated that a lipid environment facilitates the cyclization of a reactive enol intermediate to the iridoid cyclopentanoid-pyran scaffold in vitro, suggesting that membranes are an essential component of the aphid iridoid pathway. Altogether, our discovery of this complex insect metabolic pathway establishes the genetic and biochemical basis for the formation of iridoid sex pheromones in aphids, and this discovery also serves as a foundation for understanding the convergent evolution of complex metabolic pathways between kingdoms.


Asunto(s)
Áfidos , Productos Biológicos , Atractivos Sexuales , Animales , Áfidos/genética , Áfidos/metabolismo , Productos Biológicos/metabolismo , Iridoides/química , Iridoides/metabolismo , Lípidos , Monoterpenos/metabolismo , Feromonas/metabolismo , Plantas/metabolismo , Atractivos Sexuales/genética , Atractivos Sexuales/metabolismo
2.
BMC Genomics ; 24(1): 781, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102559

RESUMEN

BACKGROUND: Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS: Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION: In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.


Asunto(s)
Himenópteros , Receptores Odorantes , Abejas , Animales , Himenópteros/metabolismo , Odorantes , Secuencia de Aminoácidos , Filogenia , Simulación del Acoplamiento Molecular , Perfilación de la Expresión Génica , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Aminoácidos/metabolismo , Proteínas de Insectos/metabolismo , Antenas de Artrópodos/metabolismo , Transcriptoma
3.
Front Zool ; 19(1): 33, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36517816

RESUMEN

BACKGROUND: The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is one of the most devastating sap-sucking pests of cultivated plants. The success of P. solenopsis is attributable to its ecological resilience and insecticide resistance, making its control extremely difficult and expensive. Thus, alternative safe approaches are needed to prevent the pest population from reaching the economic threshold. One of these novel approaches is based on the fact that chemical communication via the olfactory system drives critical behaviors required for the survival and development of the species. This knowledge can be useful for controlling insect pests using traps based on semiochemicals. The antennae of insects are an invaluable model for studying the fundamentals of odor perception. Several efforts have been made to investigate the histological and ultrastructural organization of the olfactory organs, such as the antennae and maxillary palps, in many insect species. However, studies on the antennal sensory structures of Phenacoccus species are lacking. Furthermore, although enormous progress has been made in understanding the antennal structures of many mealybug species, the olfactory sensilla in the antennae of P. solenopsis have not yet been described. In this study, we describe, for the first time, the morphology and distribution of the antennal sensilla in male and female P. solenopsis using scanning electron microscopy. RESULTS: Our results revealed that the entire antennae length and the number of flagellar segments were different between the sexes. Eight morphological types of sensilla were identified on male antennae: trichoid sensilla, chaetic sensilla (three subtypes), basiconic sensilla (two subtypes), and campaniform sensilla (two subtypes). Six morphological types of sensilla were found on female antennae. Sensilla chaetica of subtype 2 and campaniform sensilla of subtype 1 were distributed only on male antennae, suggesting that these sensilla are involved in the recognition of female sex pheromones. The subtype 1 of sensilla chaetica was significantly more abundant on female antennae than on male ones, while subtype 3 was only located on the terminal flagellar segment of the antenna in both sexes. CONCLUSIONS: This study provides insightful information for future electrophysiological and behavioral studies on chemical communication in insects, particularly the cotton mealybug, P. solenopsis that could help in developing new strategies for controlling this economically important insect species.

4.
PLoS Genet ; 15(10): e1008419, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609971

RESUMEN

Microorganisms sense environmental fluctuations in nutrients and light, coordinating their growth and development accordingly. Despite their critical roles in fungi, only a few G-protein coupled receptors (GPCRs) have been characterized. The Aspergillus nidulans genome encodes 86 putative GPCRs. Here, we characterise a carbon starvation-induced GPCR-mediated glucose sensing mechanism in A. nidulans. This includes two class V (gprH and gprI) and one class VII (gprM) GPCRs, which in response to glucose promote cAMP signalling, germination and hyphal growth, while negatively regulating sexual development in a light-dependent manner. We demonstrate that GprH regulates sexual development via influencing VeA activity, a key light-dependent regulator of fungal morphogenesis and secondary metabolism. We show that GprH and GprM are light-independent negative regulators of sterigmatocystin biosynthesis. Additionally, we reveal the epistatic interactions between the three GPCRs in regulating sexual development and sterigmatocystin production. In conclusion, GprH, GprM and GprI constitute a novel carbon starvation-induced glucose sensing mechanism that functions upstream of cAMP-PKA signalling to regulate fungal development and mycotoxin production.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Aspergillus nidulans/fisiología , Proteínas Fúngicas/metabolismo , Luz , Receptores Acoplados a Proteínas G/metabolismo , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Glucosa/metabolismo , Morfogénesis , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de la radiación , Esterigmatocistina/biosíntesis
5.
Ecotoxicol Environ Saf ; 245: 114101, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36155334

RESUMEN

Recent studies have indicated that the plant volatile methyl benzoate (MB) exhibits significant insecticidal bioactivity against several common insects. However, the potential environmental hazards of MB and its safety to non-target organisms is poorly understood. In the present study, these characteristics were investigated through laboratory experiments and field investigations. The results revealed that MB was highly toxic to the agricultural pest, fall armyworm Spodoptera frugiperda. Compared with the commercial pesticide lambda-cyhalothrin, the toxicities of MB against S. frugiperda larvae and adults were comparable and 3.41 times higher, respectively. Behavioral bioassays showed that the percentage repellency of MB to S. frugiperda larvae was 56.72 %, and MB induced 69.40 % oviposition deterrence rate in S. frugiperda female adults. Furthermore, in terms of median lethal concentration (LC50) and median lethal doses (LD50), MB exhibited non-toxic effects on non-target animals with 3-d LC50 of > 1 % to natural predators (Coccinella septempunctata and Harmonia axyridis), 3-d LD50 of 467.86 µg/bee to the bumblebee Bombus terrestris, 14-d LC50 of 971.09 mg/kg to the earthworm Eisenia fetida, and 4-d LC50 of 47.30 mg/L to the zebrafish Brachydanio rerio. The accumulation of MB in the soil and earthworms was found to be extremely limited. Our comparative study clearly demonstrated that MB is effective as a selective botanical pesticide against S. frugiperda and it is safe to use in the tested environment, with no toxic effects on non-target animals and natural predators.


Asunto(s)
Escarabajos , Insecticidas , Oligoquetos , Animales , Benzoatos , Femenino , Insecticidas/toxicidad , Larva , Suelo , Spodoptera , Pez Cebra
6.
BMC Genomics ; 22(1): 172, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691636

RESUMEN

BACKGROUND: The woodwasp Sirex noctilio Fabricius is a major quarantine pest worldwide that was first discovered in China in 2013 and mainly harms Pinus sylvestris var. mongolica Litv.. S. nitobei Matsumura is a native species in China and is closely related to S. noctilio. Recently, the two woodwasps species were found attacking the P. sylvestris var. mongolica Litv in succession. The olfactory system is the foundation of insect behavior. Olfactory genes were identified through antennal transcriptome analysis. The expression profiles odorant binding proteins (OBPs) were analyzed with RT-qPCR. RESULTS: From our transcriptome analysis, 16 OBPs, 7 chemosensory proteins (CSPs), 41 odorant receptors (ORs), 8 gustatory receptors (GRs), 13 ionotropic receptors (IRs), and one sensory neuron membrane protein (SNMP) were identified in S. noctilio, while 15 OBPs, 6 CSPs, 43 ORs, 10 GRs, 16 IRs, and 1 SNMP were identified in S. nitobei. Most of the olfactory genes identified in two species were homologous. However, some species-specific olfactory genes were identified from the antennal transcriptomes, including SnocOBP13, SnocCSP6, SnocOR26, SnocGR2, SnocIR7 in S. noctilio and SnitGR9, SnitGR11, SnitIR17 in S. nitobei. In total, 14 OBPs were expressed primarily in the antennae. SnocOBP9 and SnitOBP9, identified as PBP homologues, were sex-biased expression in two siricid, but with different pattern. SnocOBP11 and SnitOBP11 were highly expressed in antennae and clearly expressed in external genitalia. SnocOBP7 and SnitOBP7 were highly expressed in male genitalia. SnocOBP3 and SnocOBP10 were highly expressed in female genitalia and male heads, while SnitOBP3 and SnitOBP10 did not show obvious tissue bias. CONCLUSION: We analyzed 86 and 91 olfactory genes from S. noctilio and S. nitobei, respectively. Most of the olfactory genes identified were homologous, but also some species-specific olfactory genes were identified, which indicated the similarities and differences of the molecular mechanisms between the two closely-related species. Different expression in the antennae, external genitals or heads, exhibiting an obvious sex bias, suggested their different role in recognizing sex pheromones or plant volatiles. Species-specific expression for several OBPs genes may suggest that they strengthened or lost their original function during species differentiation, resulting in olfactory differences between the two species.


Asunto(s)
Himenópteros , Receptores Odorantes , Animales , Antenas de Artrópodos/metabolismo , Proteínas Portadoras , China , Femenino , Perfilación de la Expresión Génica , Himenópteros/genética , Himenópteros/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Odorantes , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transcriptoma
7.
Plant Cell Environ ; 44(3): 948-963, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33099790

RESUMEN

Plant defence homoterpenes can be used to attract pest natural enemies. However, the biosynthetic pathway of homoterpenes is still unknown in rice, and the practical application of such indirect defence systems suffers from inherent limitations due to their low emissions from plants. Here, we demonstrated that the protein OsCYP92C21 is responsible for homoterpene biosynthesis in rice. We also revealed that the ability of rice to produce homoterpenes is dependent on the subcellular precursor pools. By increasing the precursor pools through specifically subcellular targeting expression, genetic transformation and genetic introgression, we significantly enhanced homoterpene biosynthesis in rice. The final introgressed GM rice plants exhibited higher homoterpene emissions than the wild type rice and the highest homoterpene emission reported so far for such GM plants even without the induction of herbivore attack. As a result, these GM rice plants demonstrated strong attractiveness to the parasitic wasp Cotesia chilonis. This study discovered the homoterpene biosynthesis pathway in rice, and lays the foundation for the utilisation of plant indirect defence mechanism in the "push-pull" strategy of integrated pest management through increasing precursor pools in the subcellular compartments and overexpressing homoterpene synthase by genetic transformation.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Oryza/metabolismo , Defensa de la Planta contra la Herbivoria , Proteínas de Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , Oryza/genética , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Terpenos/metabolismo , Avispas
8.
Microb Pathog ; 161(Pt A): 105276, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34728371

RESUMEN

Potato scab caused by pathogenic Streptomyces is a serious soil-borne disease on potato. In this study, a new Streptomyces strain 5A-1 was isolated from potato samples in China. Based on morphological characteristics, 16S rDNA gene sequence analyses, it was identified as Streptomyces griseoplanus (Streptacidiphilus griseoplanus), pathogenicity of which was measured by the methods of small potato chips, radish slices and potato pot trial inoculation. Moreover, the pathogenic genes txtAB and tomA from the Streptomyces pathogenicity island (PAI) were detected. Determination of biological characteristics showed that the optimal temperature for the growth of S. griseoplanus strain 5A-1 was 25 °C, the optimal light condition was darkness, the optimal pH value was 8.5 and the most preferred carbon source and nitrogen source is glucose and aspartate, respectively. To our knowledge, it is the first report for S. griseoplanus, as a new pathogen, to cause potato scab.


Asunto(s)
Solanum tuberosum , China , Islas Genómicas , Enfermedades de las Plantas , Virulencia
9.
BMC Genomics ; 21(1): 242, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32183717

RESUMEN

BACKGROUND: The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects. RESULTS: Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. cunea. At the metagenomic level, several microbial communities in H. cunea gut and their metabolic pathways might be beneficial to H. cunea for nutrient metabolism and detoxification, and might also contribute to its host adaptation. CONCLUSIONS: These findings explain the host and environmental adaptations of H. cunea at the genetic level and provide partial evidence for the cause of its rapid invasion and potential gene targets for innovative pest management strategies.


Asunto(s)
Adaptación Fisiológica/genética , Especies Introducidas , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/genética , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Genoma , Filogenia
10.
Mol Ecol ; 29(19): 3795-3808, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32681685

RESUMEN

Migratory insects are capable of actively sustaining powered flight for several hours. This extraordinary phenomenon requires a highly efficient transport system to cope with the energetic demands placed on the flight muscles. Here, we provide evidence that the role of the hydrophobic ligand binding of odorant binding proteins (OBPs) extends beyond their typical function in the olfactory system to support insect flight activity via lipid interactions. Transcriptomic and candidate gene analyses show that two phylogenetically clustered OBPs (OBP3/OBP6) are consistently over-expressed in adult moths of the migrant Old-World bollworm, Helicoverpa armigera, displaying sustained flight performance in flight activity bioassays. Tissue-specific over-expression of OBP6 was observed in the antennae, wings and thorax in long-fliers of H. armigera. Transgenic Drosophila flies over-expressing an H. armigera transcript of OBP6 (HarmOBP6) in the flight muscle attained higher flight speeds on a modified tethered flight system. Quantification of lipid molecules using mass spectrometry showed a depletion of triacylglyerol and phospholipids in flown moths. Protein homology models built from the crystal structure of a fatty acid carrier protein identified the binding site of OBP3 and OBP6 for hydrophobic ligand binding with both proteins exhibiting a stronger average binding affinity with triacylglycerols and phospholipids compared with other groups of ligands. We propose that HarmOBP3 and HarmOBP6 contribute to the flight capacity of a globally invasive and highly migratory noctuid moth, and in doing so, extend the function of this group of proteins beyond their typical role as chemosensory proteins in insects.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Animales , Proteínas Portadoras/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/genética , Odorantes , Receptores Odorantes/genética , Transcriptoma
11.
Genome ; 63(1): 1-12, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31533014

RESUMEN

The larvae of Holotrichia parallela, a destructive belowground herbivore, causes tremendous damages to maize plants. However, little is known if there are any defense mechanisms in maize roots to defend themselves against this herbivore. In the current research, we carried out RNA-sequencing to investigate the changes in gene transcription level in maize roots after H. parallela larvae infestation. A total of 644 up-regulated genes and 474 down-regulated genes was found. In addition, Gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Weighted gene co-expression network analysis (WGCNA) indicated that peroxidase genes may be the hub genes that regulate maize defenses to H. parallela larvae attack. We also found 105 transcription factors, 44 hormone-related genes, and 62 secondary metabolism-related genes within differentially expressed genes (DEGs). Furthermore, the expression profiles of 12 DEGs from the transcriptome analysis were confirmed by quantitative real-time PCR experiments. This transcriptome analysis provides insights into the molecular mechanisms of the underground defense in maize roots to H. parallela larvae attack and will help to select target genes of maize for defense against belowground herbivory.


Asunto(s)
Escarabajos/fisiología , Herbivoria/genética , Zea mays/genética , Animales , Escarabajos/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Larva/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Metabolismo Secundario/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Zea mays/metabolismo
12.
Arch Insect Biochem Physiol ; 101(3): e21557, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31062883

RESUMEN

The European grapevine moth, Lobesia botrana (Denis & Schiffermüller), is a serious pest in vineyards in North and South America. Mating disruption techniques have been used to control and monitor L. botrana on the basis of its sexual communication. This needs a well-tuned olfactory system, in which it is believed that pheromone-binding proteins (PBPs) are key players that transport pheromones in the antennae of moths. In this study, the selectivity of a PBP, named as LbotPBP1, was tested by fluorescence binding assays against 11 sex pheromone components and 6 host plant volatiles. In addition, its binding mechanism was predicted on the basis of structural analyses by molecular docking and complex and steered molecular dynamics (SMD). Our results indicate that LbotPBP1 binds selectively to sex pheromone components over certain host plant volatiles, according to both in vitro and in silico tests. Thus, chain length (14 carbon atoms) and functional groups (i.e., alcohol and ester) appear to be key features for stable binding. Likewise, residues such as Phe12, Phe36, and Phe118 could participate in unspecific binding processes, whilst Ser9, Ser56, and Trp114 could participate in the specific recognition and stabilization of sex pheromones instead of host plant volatiles. Moreover, our SMD approach supported 11-dodecenyl acetate as the best ligand for LbotPBP1. Overall, the dynamics simulations, contact frequency analysis and SMD shed light on the binding mechanism of LbotPBP1 and could overcome the imprecision of molecular docking, supporting the in vitro binding assays. Finally, the role of LbotPBP1 in the chemical ecology of L. botrana is discussed.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Insectos/genética , Mariposas Nocturnas/genética , Atractivos Sexuales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Insectos/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/metabolismo , Unión Proteica
13.
Plant Biotechnol J ; 16(2): 581-590, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28710782

RESUMEN

The homoterpenes (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) are major herbivore-induced plant volatiles that can attract predatory or parasitic arthropods to protect injured plants from herbivore attack. In this study, DMNT and TMTT were confirmed to be emitted from cotton (Gossypium hirsutum) plants infested with chewing caterpillars or sucking bugs. Two CYP genes (GhCYP82L1 and GhCYP82L2) involved in homoterpene biosynthesis in G. hirsutum were newly identified and characterized. Yeast recombinant expression and enzyme assays indicated that the two GhCYP82Ls are both responsible for the conversion of (E)-nerolidol to DMNT and (E,E)-geranyllinalool to TMTT. The two heterologously expressed proteins without cytochrome P450 reductase fail to convert the substrates to homoterpenes. Quantitative real-time PCR (qPCR) analysis suggested that the two GhCYP82L genes were significantly up-regulated in leaves and stems of G. hirsutum after herbivore attack. Subsequently, electroantennogram recordings showed that electroantennal responses of Microplitis mediator and Peristenus spretus to DMNT and TMTT were both dose dependent. Laboratory behavioural bioassays showed that females of both wasp species responded positively to DMNT and males and females of M. mediator could be attracted by TMTT. The results provide a better understanding of homoterpene biosynthesis in G. hirsutum and of the potential influence of homoterpenes on the behaviour of natural enemies, which lay a foundation to study genetically modified homoterpene biosynthesis and its possible application in agricultural pest control.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Gossypium/metabolismo , Alquenos/metabolismo , Transducción de Señal , Compuestos Orgánicos Volátiles/metabolismo
14.
Plant Cell Environ ; 41(1): 111-120, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28370092

RESUMEN

Volatile terpenoids play a key role in plant defence against herbivory by attracting parasitic wasps. We identified seven terpene synthase genes from lima bean, Phaseolus lunatus L. following treatment with either the elicitor alamethicin or spider mites, Tetranychus cinnabarinus. Four of the genes (Pltps2, Pltps3, Pltps4 and Pltps5) were up-regulated with their derived proteins phylogenetically clustered in the TPS-g subfamily and PlTPS3 positioned at the base of this cluster. Recombinant PlTPS3 was able to convert geranyl diphosphate and farnesyl diphosphate to linalool and (E)-nerolidol, the latter being precursor of the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). Recombinant PlTPS4 showed a different substrate specificity and produced linalool and (E)-nerolidol, as well as (E,E)-geranyllinalool from geranylgeranyl diphosphate. Transgenic rice expressing Pltps3 emitted significantly more (S)-linalool and DMNT than wild-type plants, whereas transgenic rice expressing Pltps4 produced (S)-linalool, DMNT and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). In laboratory bioassays, female Cotesia chilonis, the natural enemy of the striped rice stemborer, Chilo suppressalis, were significantly attracted to the transgenic plants and their volatiles. We further confirmed this with synthetic blends mimicking natural rice volatile composition. Our study demonstrates that the transformation of rice to produce volatile terpenoids has the potential to enhance plant indirect defence through natural enemy recruitment.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Fabaceae/enzimología , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/parasitología , Transferasas Alquil y Aril/genética , Animales , Conducta Animal , Femenino , Cromatografía de Gases y Espectrometría de Masas , Genes de Plantas , Parásitos/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Compuestos Orgánicos Volátiles/metabolismo , Avispas/fisiología
15.
J Chem Ecol ; 43(2): 207-214, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28070757

RESUMEN

Pheromone binding proteins (PBPs) are thought to play key roles in insect sex pheromone recognition; however, there is little in vivo evidence to support this viewpoint in comparison to abundant biochemical data in vitro. In the present study, two noctuid PBP genes HarmPBP1 and HarmPBP2 of the serious agricultural pest, Helicoverpa armigera were selected to be knocked down by RNA interference, and then the changes in electrophysiological and behavioral responses of male mutants to their major sex pheromone component (Z)-11-hexadecenal (Z11-16:Ald) were recorded. There were no significant electrophysiological or behavioral changes of tested male moths in response to Z11-16:Ald when either single PBP gene was knocked down. However, decreased sensitivity of male moths in response to Z11-16:Ald was observed when both HarmPBP1 and HarmPBP2 genes were silenced. These results reveal that both HarmPBP1 and HarmPBP2 are required for the recognition of the main sex pheromone component Z11-16:Ald in H. armigera. Furthermore, these findings may help clarify physiological roles of moth PBPs in the sex pheromone recognition pathway, which in turn could facilitate pest control by exploring sex pheromone blocking agents.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Insectos/metabolismo , Cetonas/farmacología , Mariposas Nocturnas , Interferencia de ARN , Atractivos Sexuales/metabolismo , Animales , Antenas de Artrópodos/efectos de los fármacos , Antenas de Artrópodos/fisiología , Conducta Animal/efectos de los fármacos , Fenómenos Electrofisiológicos , Técnicas de Silenciamiento del Gen , Control de Insectos , Proteínas de Insectos/genética , Cetonas/metabolismo , Masculino , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/fisiología , Unión Proteica , Atractivos Sexuales/genética , Conducta Sexual Animal/efectos de los fármacos
17.
Mol Biol Evol ; 32(1): 63-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25234705

RESUMEN

Copy number variation (CNV) makes a major contribution to overall genetic variation and is suspected to play an important role in adaptation. However, aside from a few model species, the extent of CNV in natural populations has seldom been investigated. Here, we report on CNV in the pea aphid Acyrthosiphon pisum, a powerful system for studying the genetic architecture of host-plant adaptation and speciation thanks to multiple host races forming a continuum of genetic divergence. Recent studies have highlighted the potential importance of chemosensory genes, including the gustatory and olfactory receptor gene families (Gr and Or, respectively), in the process of host race formation. We used targeted resequencing to achieve a very high depth of coverage, and thereby revealed the extent of CNV of 434 genes, including 150 chemosensory genes, in 104 individuals distributed across eight host races of the pea aphid. We found that CNV was widespread in our global sample, with a significantly higher occurrence in multigene families, especially in Ors. We also observed a decrease in the gene probability of being completely duplicated or deleted (CDD) with increase in coding sequence length. Genes with CDD variants were usually more polymorphic for copy number, especially in the P450 gene family where toxin resistance may be related to gene dosage. We found that Gr were overrepresented among genes discriminating host races, as were CDD genes and pseudogenes. Our observations shed new light on CNV dynamics and are consistent with CNV playing a role in both local adaptation and speciation.


Asunto(s)
Áfidos/clasificación , Áfidos/genética , Variaciones en el Número de Copia de ADN , Fabaceae/fisiología , Proteínas de Insectos/genética , Simbiosis , Adaptación Biológica , Animales , Áfidos/fisiología , Biología Computacional/métodos , Evolución Molecular , Fabaceae/clasificación , Especiación Genética , Variación Genética , Genoma de los Insectos , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Receptores Odorantes/genética , Análisis de Secuencia de ADN
18.
Mol Ecol ; 25(17): 4197-215, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27474484

RESUMEN

Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences amongst host races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on numerous plants in the Fabaceae and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host races may result from genetic drift and reproductive isolation and possibly divergent selection. Expression differences related to plant adaptation include a subset of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies' findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change.


Asunto(s)
Adaptación Fisiológica/genética , Áfidos/genética , Fabaceae , Genética de Población , Animales , Ambiente , Flujo Genético , Fenotipo , Aislamiento Reproductivo , Selección Genética , Transcriptoma
19.
New Phytol ; 206(3): 1101-1115, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25644034

RESUMEN

Aphids are important pests of wheat (Triticum aestivum) that affect crop production globally. Herbivore-induced emission of sesquiterpenes can repel pests, and farnesyl pyrophosphate synthase (FPS) is a key enzyme involved in sesquiterpene biosynthesis. However, fps orthologues in wheat and their functional roles in sesquiterpene synthesis and defence against aphid infestation are unknown. Here, two fps isoforms, Tafps1 and Tafps2, were identified in wheat. Quantitative real-time polymerase chain reaction (qRT-PCR) and in vitro catalytic activity analyses were conducted to investigate expression patterns and activity. Heterologous expression of these isoforms in Arabidopsis thaliana, virus-induced gene silencing (VIGS) in wheat and aphid behavioural assays were performed to understand the functional roles of these two isoforms. We demonstrated that Tafps1 and Tafps2 played different roles in induced responses to aphid infestation and in sesquiterpene synthesis. Heterologous expression in A. thaliana resulted in repulsion of the peach aphid (Myzus persicae). Wheat plants with these two isoforms transiently silenced were significantly attractive to grain aphid (Sitobion avenae). Our results provide new insights into induced defence against aphid herbivory in wheat, in particular, the different roles of the two Tafps isoforms in both sesquiterpene biosynthesis and defence against aphid infestation.


Asunto(s)
Áfidos/fisiología , Geraniltranstransferasa/química , Sesquiterpenos/metabolismo , Triticum/enzimología , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Silenciador del Gen , Geraniltranstransferasa/genética , Herbivoria , Interacciones Huésped-Parásitos/genética , Isoenzimas/química , Isoenzimas/genética , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de Proteína , Triticum/genética
20.
J Chem Ecol ; 40(6): 541-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24928754

RESUMEN

Odorant binding proteins (OBPs) are believed to be important for transporting semiochemicals through the aqueous sensillar lymph to the olfactory receptor cells within the insect antennal sensilla. In this study, three new putative OBP genes, MmedOBP8-10, were identified from a Microplitis mediator (Hymenoptera: Braconidae) antennal cDNA library. Quantitative real-time PCR (qRT-PCR) analysis revealed that all three of the OBP genes were expressed mainly in the antennae of adult wasps. The three OBPs were recombinantly expressed in Escherichia coli and purified by Ni ion affinity chromatography. Fluorescence competitive binding assays were performed using N-phenyl-naphthylamine as a fluorescent probe and 45 small organic compounds as competitors. These assays demonstrated that the three M. mediator OBPs can bind a broad range of odorant molecules with different binding affinities. They can bind the following ligands: nonane, farnesol, nerolidol, nonanal, ß-ionone, acetic ether, and farnesene. In a Y-tube assay with these ligands as odor stimuli and paraffin oil as a control, all ligands, except nerolidol and acetic ether, were able to elicit behavioral responses in adult M. mediator. The wasps were significantly attracted to ß-ionone, nonanal, and farnesene and repelled by nonane and farnesol. The results of this work provide insight into the chemosensory functions of the OBPs in M. mediator.


Asunto(s)
Himenópteros , Proteínas de Insectos/metabolismo , Receptores Odorantes/metabolismo , 1-Naftilamina/análogos & derivados , 1-Naftilamina/metabolismo , Aldehídos , Animales , Antenas de Artrópodos , Conducta Animal , Femenino , Colorantes Fluorescentes/metabolismo , Regulación de la Expresión Génica , Himenópteros/genética , Proteínas de Insectos/genética , Masculino , Datos de Secuencia Molecular , Norisoprenoides , Receptores Odorantes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA