Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 109: 367-374, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28189615

RESUMEN

The moso bamboo genome contains the two structurally intact and thus potentially functional mariner-like elements Ppmar1 and Ppmar2. Both elements contain perfect terminal inverted repeats (TIRs) and a full-length intact transposase gene. Here we investigated whether Ppmar1 is functional in yeast (Saccharomyces cerevisiae). We have designed a two-component system consisting of a transposase expression cassette and a non-autonomous transposon on two separate plasmids. We demonstrate that the Ppmar1 transposase Pptpase1 catalyses excision of the non-autonomous Ppmar1NA element from the plasmid and reintegration at TA dinucleotide sequences in the yeast chromosomes. In addition, we generated 14 hyperactive Ppmar1 transposase variants by systematic single amino acid substitutions. The most active transposase variant, S171A, induces 10-fold more frequent Ppmar1NA excisions in yeast than the wild type transposase. The Ppmar1 transposon is a promising tool for insertion mutagenesis in moso bamboo and may be used in other plants as an alternative to the established transposon tagging systems.


Asunto(s)
Elementos Transponibles de ADN , Saccharomyces cerevisiae/genética , Sasa/genética , ADN de Plantas , Filogenia , Plásmidos , Transposasas/metabolismo
2.
J Plant Res ; 124(5): 607-17, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21165667

RESUMEN

Mariner-like elements (MLEs) are the most diverse and widespread transposable elements, with members of the MLE superfamily found in fungi, plants, ciliates and animals. In a previous study, we characterized 82 MLE transposase gene fragments (average length 383 bp) in 44 bamboo species, indicating that MLEs are widespread, abundant and diverse in the Bambusoideae subfamily. In this study, we isolated 79 full-length MLE transposase genes from 63 bamboo species representing 38 genera in six subtribes mainly found in China. The transposases were highly conserved, mostly uniform in length and contained intact DNA-binding motifs and DD39D catalytic domains with few notable frameshift, indel and nonsense mutations. This suggested the MLEs are probably still mobile, not yet affected by vertical inactivation. A phylogenetic tree of the Bambusoideae subfamily established using ribosomal DNA internal transcribed spacer sequences was incongruent with a second tree based on the MLE transposase genes. This evidence, together with the presence of near-identical MLEs in distantly related species and diverse MLEs in closely related species, indicates that MLEs have evolved in a distinct manner, probably independently of speciation events in the subfamily. The evolution and diversity of MLE transposase genes in the Bambusoideae subfamily is discussed.


Asunto(s)
Proteínas de Unión al ADN/genética , Evolución Molecular , Poaceae/genética , Transposasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia de Consenso , Elementos Transponibles de ADN/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Variación Genética , Datos de Secuencia Molecular , Filogenia , Poaceae/enzimología , Alineación de Secuencia , Análisis de Secuencia de ADN
3.
Methods Mol Biol ; 2250: 257-270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33900611

RESUMEN

Bamboo, a fast-growing non-timber forest plant with many uses, is a valuable species for green development. However, bamboo flowering is very infrequent, extending, in general, for up to 120 years. Ecologically, bamboo species are generally better adapted to various environments than other grasses. Therefore, the species deserves a special status in what could be called Ecological Bioeconomy. An understanding of the genetic processes of bamboo can help us sustainably develop and manage bamboo forests. Transposable elements (TEs), jumping genes or transposons, are major genetic elements in plant genomes. The rapid development of the bamboo reference genome, at the chromosome level, reveals that TEs occupy over 63.24% of the genome. This is higher than found in rice, Brachypodium, and sorghum. The bamboo genome contains diverse families of TEs, which play a significant role in bamboo's biological processes including growth and development. TEs provide important clues for understanding the evolution of the bamboo genome. In this chapter, we briefly describe the current status of research on TEs in the bamboo genome, their regulation, and transposition mechanisms. Perspectives for future research are also provided.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma de Planta/genética , Genómica/métodos , Sasa/genética , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Variación Genética , Tamaño del Genoma/genética , Internet , Fitomejoramiento/economía , Fitomejoramiento/métodos , Ploidias , Sasa/clasificación , Especificidad de la Especie
4.
Genetica ; 138(8): 861-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20577895

RESUMEN

Ty1-copia retroelements have been found in all major plants and are largely responsible for the huge differences in the genome size. In this study we isolated and sequenced Ty1-copia reverse transcriptase (rt) gene fragments from 44 representative species of bamboo and nine cultivars or forms of Phyllostachys pubescens. Phylogenetic analysis of 72 distinct Ty1-copia rt sequences showed that Ty1-copia retroelements were widespread, diverse and abundant in these species of Bambusoideae subfamily. In addition, a molecular phylogeny of the species of the Bambusoideae subfamily was established by using the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS) sequences. The comparison between ITS- and Ty1-copia rt- based trees is obviously incongruent. The results suggested either the existence of horizontal transfer events between phylogenetically distant species, or an ancestral Ty1-copia retroelement polymorphism followed by different evolution and stochastic losses.


Asunto(s)
Evolución Molecular , Variación Genética/genética , Retroelementos/genética , Sasa/genética , Secuencia de Aminoácidos , ADN Espaciador Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , Polimorfismo Genético , Sasa/enzimología , Procesos Estocásticos , Transposasas/genética
5.
Mob DNA ; 10: 35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452694

RESUMEN

Ppmar1 and Ppmar2 are two active mariner-like elements (MLEs) cloned from moso bamboo (Phyllostachys edulis (Carrière) J. Houz) genome possessing transposases that harbour nuclear export signal (NES) domain, but not any nuclear localization signal (NLS) domain. To understand the functions of NES in transposon activity, we have conducted two experiments, fluorescence and excision frequency assays in the yeast system. For this, by site-directed mutagenesis, three NES mutants were developed from each of the MLE. In the fluorescence assay, the mutants, NES-1, 2 and 3 along with the wild types (NES-0) were fused with fluorescent proteins, enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP) were co-transformed into yeast system. To differentiate protein localisation under the NES influence, ECFP alone was fused to wild and mutant NES domains either on N- or C-terminal and not to EYFP. Fluorescence assay revealed that blue fluorescence of ECFP was more intense than the red fluorescence of the EYFP in the yeast cell matrix. Further, ECFP had a wider localisation in the cellular matrix, but EYFP was largely located in the nucleus. The NES-1 domain was related to the comparatively high spread of ECFP, while NES-2 and NES-3 indicated a low spread, implying that NES activity on nuclear export increased when the NES is made leucine-rich, while the signalling activity was reduced when the leucine content was lowered in the NES domain. In the transposon excision assay, the mutant and wild type NES of both the Ppmar elements were integrated into an Ade2 vector, and within the Ade2 gene. Co-transformation of the vector together with non-autonomous Ppmar transposons and NES-lacking transposases was used to assess the differential excision frequencies of the mutants NES domains. In both the MLEs, NES-1 had the highest excision suppression, which was less than half of the excision frequency of the wild type. NES-2 and NES-3 elements showed, up to three times increase in transposon excision than the wild types. The results suggested that NES is an important regulator of nuclear export of transposase in Ppmar elements and the mutation of the NES domains can either increase or decrease the export signalling. We speculate that in moso bamboo, NESs regulates the transposition activity of MLEs to maintain the genome integrity.

6.
Springerplus ; 3: 486, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25221740

RESUMEN

Current databases of Phyllostachys pubescens full-length cDNAs (FL-cDNAs) provide a rich source of sequences for the development of potential FL-cDNA simple sequence repeat (SSR) markers. We screened 10,608 P. pubescens cDNAs, discovering 1614 SSRs in 1382 SSR-containing FL-cDNAs. The SSRs were more abundant within transposable elements (TEs) than expressed sequence tags (ESTs) and genome survey sequences (GSSs), and specific dinucleotide repeats tended to associate with particular TE families: (TA)n with En/Spm and (CT)n with Mutator. A selected panel of 100 FL-cDNAs containing type I SSRs yielded 68 functional SSR markers with an average polymorphism information content (PIC) value of 0.12, among which 22 loci contained polymorphisms. These markers became less transferrable (83.1% → 69.9% → 49.3%) but more polymorphic (79.4% → 92.3% → 92.8%) with increasing phylogenetic distance (intra-genus → intra-subtribe → intra-family). Transferability and polymorphism also depended on the location of the marker, with those located in the coding region being more transferrable (69.1%) and less polymorphic (89.4%) than those in the 5'-UTR (63.4% transferable, 90.7% polymorphic) and the 3'-UTR (61.8% transferable, 91.4% polymorphic). As proof of principle, we were able to use our FL-cDNA SSR markers to identify the parental stocks in interspecific hybrids of bamboo within and beyond P. pubescens, and estimate the outcrossing rate for P. pubescens. Our research should facilitate molecular breeding in bamboo species where original genetic markers are scarce.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA