Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Pharmacol Res ; 198: 107016, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38006980

RESUMEN

The NLRP3 inflammasome is a supramolecular complex that is linked to sterile and pathogen-dependent inflammation, and its excessive activation underlies many diseases. Ion flux disturbance and cell volume regulation are both reported to mediate NLRP3 inflammasome activation, but the underlying orchestrating signaling remains not fully elucidated. The volume-regulated anion channel (VRAC), formed by LRRC8 proteins, is an important constituent that controls cell volume by permeating chloride and organic osmolytes in response to cell swelling. We now demonstrate that Lrrc8a, the essential component of VRAC, plays a central and specific role in canonical NLRP3 inflammasome activation. Moreover, VRAC acts downstream of K+ efflux for NLRP3 stimuli that require K+ efflux. Mechanically, our data demonstrate that VRAC modulates itaconate efflux and damaged mitochondria production for NLRP3 inflammasome activation. Further in vivo experiments show mice with Lrrc8a deficiency in myeloid cells were protected from lipopolysaccharides (LPS)-induced endotoxic shock. Taken together, this work identifies VRAC as a key regulator of NLRP3 inflammasome and innate immunity by regulating mitochondrial adaption for macrophage activation and highlights VRAC as a prospective drug target for the treatment of NLRP3 inflammasome and itaconate related diseases.


Asunto(s)
Inflamasomas , Proteínas de la Membrana , Ratones , Animales , Proteínas de la Membrana/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Aniones/metabolismo , Mitocondrias/metabolismo
2.
Acta Pharmacol Sin ; 44(4): 811-821, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36151392

RESUMEN

Herpes simplex virus (HSV) infection induces a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), which plays a critical role in facilitating viral entry. T-type calcium channel blockers and EGTA, a chelate of extracellular Ca2+, suppress HSV-2 infection. But the cellular mechanisms mediating HSV infection-activated Ca2+ signaling have not been completely defined. In this study we investigated whether the TRPV4 channel was involved in HSV-2 infection in human vaginal epithelial cells. We showed that the TRPV4 channel was expressed in human vaginal epithelial cells (VK2/E6E7). Using distinct pharmacological tools, we demonstrated that activation of the TRPV4 channel induced Ca2+ influx, and the TRPV4 channel worked as a Ca2+-permeable channel in VK2/E6E7 cells. We detected a direct interaction between the TRPV4 channel protein and HSV-2 glycoprotein D in the plasma membrane of VK2/E6E7 cells and the vaginal tissues of HSV-2-infected mice as well as in phallic biopsies from genital herpes patients. Pretreatment with specific TRPV4 channel inhibitors, GSK2193874 (1-4 µM) and HC067047 (100 nM), or gene silence of the TRPV4 channel not only suppressed HSV-2 infectivity but also reduced HSV-2-induced cytokine and chemokine generation in VK2/E6E7 cells by blocking Ca2+ influx through TRPV4 channel. These results reveal that the TRPV4 channel works as a Ca2+-permeable channel to facilitate HSV-2 infection in host epithelial cells and suggest that the design and development of novel TRPV4 channel inhibitors may help to treat HSV-2 infections.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Humano 2 , Canales Catiónicos TRPV , Animales , Femenino , Humanos , Ratones , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Células Epiteliales/metabolismo , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Transducción de Señal/fisiología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/fisiología
3.
Pharmacol Res ; 177: 106112, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122955

RESUMEN

Emerging data have demonstrated the critical roles of potassium efflux in the innate immune system. However, the role of potassium efflux in TLR3/4 activation and type I interferon (IFN) responses are not well elucidated. In the present study, we found potassium efflux is essential for TLR3/4 signaling, which mediates the expression of IFN and its inducible gene Cxcl10 and proinflammatory cytokine gene TNF-α. Furthermore, pharmacological inhibition of Kv1.3 channel (PAP-1), but not Kir2.1, KCa3.1 or TWIK2, attenuated TLR3/4 receptor activation in macrophages. Mechanistically, PAP-1 suppressed LPS-induced inflammatory function through marked suppressing the activation of JNK mitogen-activated protein kinase (MAPK) and p65 subunit of nuclear factor-kB (NF-kB). Notably, PAP-1 effectively protected mice against Listeria monocytogenes induced infection. Our findings reveal that potassium efflux mediated by the Kv1.3 channel is essential for TLR3/4 activation and suggest that pharmacological inhibition of Kv1.3 may help to treat type I IFN related autoimmune diseases and bacterial infections.


Asunto(s)
Listeria monocytogenes , Receptor Toll-Like 3 , Animales , Listeria monocytogenes/metabolismo , Macrófagos/metabolismo , Ratones , Transducción de Señal , Receptor Toll-Like 3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Acta Pharmacol Sin ; 43(4): 992-1000, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34341510

RESUMEN

Dysregulation of NLRP3 inflammasome results in uncontrolled inflammation, which participates in various chronic diseases. TWIK2 potassium channel mediates potassium efflux that has been reported to be an essential upstream mechanism for ATP-induced NLRP3 inflammasome activation. Thus, TWIK2 potassium channel could be a potential drug target for NLRP3-related inflammatory diseases. In the present study we investigated the effects of known K2P channel modulators on TWIK2 channel expressed in a heterologous system. In order to increase plasma membrane expression and thus TWIK2 currents, a mutant channel with three mutations (TWIK2I289A/L290A/Y308A) in the C-terminus was expressed in COS-7 cells. TWIK2 currents were assessed using whole-cell voltage-clamp recording. Among 6 known K2P channel modulators tested (DCPIB, quinine, fluoxetine, ML365, ML335, and TKDC), ML365 was the most potent TWIK2 channel blocker with an IC50 value of 4.07 ± 1.5 µM. Furthermore, ML365 selectively inhibited TWIK2 without affecting TWIK1 or THIK1 channels. We showed that ML365 (1, 5 µM) concentration-dependently inhibited ATP-induced NLRP3 inflammasome activation in LPS-primed murine BMDMs, whereas it did not affect nigericin-induced NLRP3, or non-canonical, AIM2 and NLRC4 inflammasomes activation. Knockdown of TWIK2 significantly impaired the inhibitory effect of ML365 on ATP-induced NLRP3 inflammasome activation. Moreover, we demonstrated that pre-administration of ML365 (1, 10, 25 mg/kg, ip) dose-dependently ameliorated LPS-induced endotoxic shock in mice. In a preliminary pharmacokinetic study conducted in rats, ML365 showed good absolute oral bioavailability with F value of 22.49%. In conclusion, ML365 provides a structural reference for future design of selective TWIK2 channel inhibitors in treating related inflammatory diseases.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Adenosina Trifosfato/metabolismo , Animales , Proteínas de Unión al ADN , Inflamasomas/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas
5.
Acta Pharmacol Sin ; 43(1): 121-132, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33767379

RESUMEN

Urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) are important targets for the development of uric acid-lowering drugs. We previously showed that the flexible linkers of URAT1 inhibitors could enhance their potency. In this study we designed and synthesized CDER167, a novel RDEA3710 analogue, by introducing a linker (methylene) between the naphthalene and pyridine rings to increase flexibility, and characterized its pharmacological and pharmacokinetics properties in vitro and in vivo. We showed that CDER167 exerted dual-target inhibitory effects on both URAT1 and GLUT9: CDER167 concentration-dependently inhibited the uptake of [14C]-uric acid in URAT1-expressing HEK293 cells with an IC50 value of 2.08 ± 0.31 µM, which was similar to that of RDEA3170 (its IC50 value was 1.47 ± 0.23 µM). Using site-directed mutagenesis, we demonstrated that CDER167 might interact with URAT1 at S35 and F365. In GLUT9-expressing HEK293T cells, CDER167 concentration-dependently inhibited GLUT9 with an IC50 value of 91.55 ± 15.28 µM, whereas RDEA3170 at 100 µM had no effect on GLUT9. In potassium oxonate-induced hyperuricemic mice, oral administration of CDER167 (10 mg·kg-1 · d-1) for 7 days was more effective in lowering uric acid in blood and significantly promoted uric acid excretion in urine as compared with RDEA3170 (20 mg·kg-1 · d-1) administered. The animal experiment proved the safety of CDER167. In addition, CDER167 displayed better bioavailability than RDEA3170, better metabolic stability and no hERG toxicity at 100 µM. These results suggest that CDER167 deserves further investigation as a candidate antihyperuricemic drug targeting URAT1 and GLUT9.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa , Hiperuricemia , Transportadores de Anión Orgánico , Proteínas de Transporte de Catión Orgánico , Humanos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Células HEK293 , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Estructura Molecular , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relación Estructura-Actividad
6.
Biochem Biophys Res Commun ; 533(4): 952-957, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33008592

RESUMEN

Quercetin is a natural flavonoid which has been reported to be analgesic in different animal models of pain. However, the mechanism underlying the pain-relieving effects is still unclear. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play critical roles in controlling pacemaker activity in cardiac and nervous systems, making the channel a new target for therapeutic exploration. In this study, we explored a series of flavonoids for their modulation on HCN channels. Among all tested flavonoids, quercetin was the most potent inhibitor for HCN channels with an IC50 value of 27.32 ± 1.19 µM for HCN2. Furthermore, quercetin prominently left shifted the voltage-dependent activation curves of HCN channels and decelerated deactivation process. The results presented herein firstly characterize quercetin as a novel and potent inhibitor for HCN channels, which represents a novel structure for future drug design of HCN channel inhibitors.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Quercetina/farmacología , Animales , Células COS , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Fenómenos Electrofisiológicos , Flavonoides/química , Flavonoides/farmacología , Flavonoles/química , Flavonoles/farmacología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/genética , Canales de Potasio/metabolismo , Quercetina/química , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
7.
J Biol Chem ; 293(35): 13440-13451, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29925591

RESUMEN

Volume-regulated anion channels (VRACs) are crucial for cell volume regulation and have various roles in physiology and pathology. VRACs were recently discovered to be formed by heteromers of leucine-rich repeat-containing 8 (LRRC8) proteins. However, the structural determinants of VRAC permeation and gating remain largely unknown. We show here that the short stretch preceding the first LRRC8 transmembrane domain determines VRAC conductance, ion permeability, and inactivation gating. Substituted-cysteine accessibility studies revealed that several of the first 15 LRRC8 residues are functionally important and exposed to a hydrophilic environment. Substituting glutamate 6 with cysteine decreased the amplitudes of swelling-activated ICl,vol currents, strongly increased iodide-over-chloride permeability, and markedly shifted the voltage dependence of channel inactivation. Importantly, these effects were reversed by 2-sulfonatoethyl methanethiosulfonate, which restores the negative charge at this amino acid position. Cd2+-mediated blocking of ICl,vol in cysteine variants suggested that the LRRC8 N termini come close together in the multimeric channel complex and might form part of the pore. We propose a model in which the N termini of the LRRC8 subunits line the cytoplasmic portion of the VRAC pore, possibly by folding back into the ion permeation pathway.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Tamaño de la Célula , Células HCT116 , Humanos , Transporte Iónico , Proteínas de la Membrana/genética , Mutación Puntual , Dominios Proteicos
8.
Acta Pharmacol Sin ; 40(6): 746-754, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30315249

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a critical role in controlling pacemaker activity in both heart and nervous system. Developing HCN channel inhibitors has been proposed to be an important strategy for the treatment of pain, heart failure, arrhythmias, and epilepsy. One HCN channel inhibitor, ivabradine, has been clinically approved for the treatment of angina pectoris and heart failure. In this study, we designed and synthesized eight alkanol amine derivatives, and assessed their effects on HCN channels expressed in COS7 cells using a whole-cell patch clamp method. Among them, compound 4e displayed the most potent inhibitory activity with an IC50 of 2.9 ± 1.2 µM at - 120 mV on HCN2 channel expressed in COS7 cells. Further analysis revealed that application of compound 4e (10 µM) caused a slowing of activation and a hyperpolarizing shift (ΔV1/2 = - 30.2 ± 2.9 mV, n = 5) in the voltage dependence of HCN2 channel activation. The inhibitory effect of compound 4e on HCN1 and HCN4 channel expressed in COS7 cells was less potent with IC50 of 17.2 ± 1.3 and 7.3 ± 1.2 µM, respectively. Besides, we showed that application of compound 4e (10 µM) inhibited Ih and action potential firing in acutely dissociated mouse small dorsal root ganglion neurons. Our study provides a new strategy for the design and development of potent HCN channel inhibitors.


Asunto(s)
Amino Alcoholes/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Moduladores del Transporte de Membrana/farmacología , Potenciales de Acción/efectos de los fármacos , Amino Alcoholes/síntesis química , Amino Alcoholes/química , Animales , Células COS , Chlorocebus aethiops , Humanos , Masculino , Moduladores del Transporte de Membrana/síntesis química , Moduladores del Transporte de Membrana/química , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Canales de Potasio
9.
J Appl Toxicol ; 39(8): 1233-1244, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31066085

RESUMEN

Doxorubicin (DOX) is a highly active anticancer drug with severe cytotoxicity, which is strongly associated with oxidative stress. Carvedilol (CAR), used as its racemate with S-CAR and R-CAR (1:1), has been previously reported to ameliorate the DOX-induced cytotoxicity. However, the main contributor from CAR of its protective effects has not been clear. Therefore, in this study, we aimed to investigate further the different effects of CAR enantiomers on DOX-induced cytotoxicity in human umbilical vein endothelial cells and rats, respectively. Results indicated that S-CAR could significantly attenuate DOX-induced cell death, apoptotic morphological changes, decrease the mitochondrial membrane potential and oxidative stress responses by increasing the superoxide dismutase and catalase activities, and decreasing malondialdehyde contents and reactive oxygen species levels via the phosphoinositide 3-kinase/AKT/endothelial nitric oxide synthase pathway in vitro. Consistent with the in vitro study, the protective effects of S-CAR on the myocardial tissues and hemodynamics were also detected in rats suffering because of DOX treatment. With the obtained results, we can first conclude that S-CAR provides superior protection to injury induced by DOX relative to that of racemic CAR and R-CAR.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Carvedilol/farmacología , Doxorrubicina/toxicidad , Animales , Antioxidantes/metabolismo , Peso Corporal/efectos de los fármacos , Catalasa/sangre , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hemodinámica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/sangre , Superóxido Dismutasa/sangre , Análisis de Supervivencia
12.
Proc Natl Acad Sci U S A ; 110(21): 8726-31, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23650395

RESUMEN

Pharmacological augmentation of neuronal KCNQ muscarinic (M) currents by drugs such as retigabine (RTG) represents a first-in-class therapeutic to treat certain hyperexcitatory diseases by dampening neuronal firing. Whereas all five potassium channel subtypes (KCNQ1-KCNQ5) are found in the nervous system, KCNQ2 and KCNQ3 are the primary players that mediate M currents. We investigated the plasticity of subtype selectivity by two M current effective drugs, retigabine and zinc pyrithione (ZnPy). Retigabine is more effective on KCNQ3 than KCNQ2, whereas ZnPy is more effective on KCNQ2 with no detectable effect on KCNQ3. In neurons, activation of muscarinic receptor signaling desensitizes effects by retigabine but not ZnPy. Importantly, reduction of phosphatidylinositol 4,5-bisphosphate (PIP2) causes KCNQ3 to become sensitive to ZnPy but lose sensitivity to retigabine. The dynamic shift of pharmacological selectivity caused by PIP2 may be induced orthogonally by voltage-sensitive phosphatase, or conversely, abolished by mutating a PIP2 site within the S4-S5 linker of KCNQ3. Therefore, whereas drug-channel binding is a prerequisite, the drug selectivity on M current is dynamic and may be regulated by receptor signaling pathways via PIP2.


Asunto(s)
Epilepsia/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Transducción de Señal , Animales , Anticonvulsivantes/farmacología , Células CHO , Carbamatos/farmacología , Cricetinae , Cricetulus , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Queratolíticos/farmacología , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Compuestos Organometálicos/farmacología , Fenilendiaminas/farmacología , Fosfatidilinositol 4,5-Difosfato , Piridinas/farmacología
13.
Proc Natl Acad Sci U S A ; 110(50): 20093-8, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277843

RESUMEN

The S4 segment and the S4-S5 linker of voltage-gated potassium (Kv) channels are crucial for voltage sensing. Previous studies on the Shaker and Kv1.2 channels have shown that phosphatidylinositol-4,5-bisphosphate (PIP2) exerts opposing effects on Kv channels, up-regulating the current amplitude, while decreasing the voltage sensitivity. Interactions between PIP2 and the S4 segment or the S4-S5 linker in the closed state have been highlighted to explain the effects of PIP2 on voltage sensitivity. Here, we show that PIP2 preferentially interacts with the S4-S5 linker in the open-state KCNQ2 (Kv7.2) channel, whereas it contacts the S2-S3 loop in the closed state. These interactions are different from the PIP2-Shaker and PIP2-Kv1.2 interactions. Consistently, PIP2 exerts different effects on KCNQ2 relative to the Shaker and Kv1.2 channels; PIP2 up-regulates both the current amplitude and voltage sensitivity of the KCNQ2 channel. Disruption of the interaction of PIP2 with the S4-S5 linker by a single mutation decreases the voltage sensitivity and current amplitude, whereas disruption of the interaction with the S2-S3 loop does not alter voltage sensitivity. These results provide insight into the mechanism of PIP2 action on KCNQ channels. In the closed state, PIP2 is anchored at the S2-S3 loop; upon channel activation, PIP2 interacts with the S4-S5 linker and is involved in channel gating.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/metabolismo , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Conformación Proteica , Animales , Células CHO , Cricetinae , Cricetulus , ADN Complementario/genética , Activación del Canal Iónico/genética , Canal de Potasio KCNQ2/genética , Simulación de Dinámica Molecular , Mutagénesis , Técnicas de Placa-Clamp , Xenopus laevis
14.
Mol Pharmacol ; 87(1): 31-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25319542

RESUMEN

Retigabine (RTG, [ethyl N-[2-amino-4-[(4-fluorophenyl)methyl]amino] phenyl] carbamate]) is a first-in-class antiepileptic drug that acts by potentiating neuronal KCNQ potassium channels; however, it has less than optimal brain distribution. In this study, we report that P-RTG (ethyl N-[2-amino-4-((4-fluorobenzyl)(prop-2-ynyl)amino)phenyl]carbamate), an RTG derivative that incorporates a propargyl group at the N position of the RTG linker, exhibits an inverted brain distribution compared with RTG. The brain-to-plasma concentration ratio of P-RTG increased to 2.30 compared with 0.16 for RTG. However, the structural modification did not change the drug's potentiation potency, subtype selectivity, or RTG molecular determinants on KCNQ channels. In addition, in cultured hippocampal neurons, P-RTG exhibited a similar capability as RTG for suppressing both induced and spontaneous action potential firing. Notably, P-RTG antiepileptic activity in the maximal electroshock (MES)-induced mouse seizure model was significantly enhanced to a value 2.5 times greater than that of RTG. Additionally, the neurotoxicity of P-RTG in the rotarod test was comparable with that of RTG. Collectively, our results indicate that the incorporation of a propargyl group significantly improves the RTG brain distribution, supporting P-RTG as a promising antiepileptic drug candidate. The strategy for improving brain-to-plasma distribution of RTG might be applicable for the drug development of other central nervous system diseases.


Asunto(s)
Anticonvulsivantes/farmacocinética , Carbamatos/farmacocinética , Canales de Potasio KCNQ/metabolismo , Fenilendiaminas/farmacocinética , Convulsiones/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Animales , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/efectos adversos , Células CHO , Carbamatos/administración & dosificación , Carbamatos/efectos adversos , Células Cultivadas , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Ratones , Fenilendiaminas/administración & dosificación , Fenilendiaminas/efectos adversos , Convulsiones/inducido químicamente
15.
Eur J Med Chem ; 265: 116068, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141284

RESUMEN

Thirteen new sirenin derivatives named eupenicisirenins C-O (1-13), along with a biosynthetically related known one (14), were isolated from the mangrove sediment-derived fungus Penicillium sp. SCSIO 41410. The structures, which possessed a rare cyclopropane moiety, were confirmed by extensive analyses of the spectroscopic data, quantum chemical calculations, and X-ray diffraction. Among them, eupenicisirenin C (1) exhibited the strongest NF-κB inhibitory activities, as well as suppressing effects on cGAS-STING pathway. Moreover, 1 showed the significant inhibitory effect on RANKL-induced osteoclast differentiation in bone marrow macrophages cells, and also displayed the therapeutic potential on prednisolone-induced zebrafish osteoporosis. Transcriptome analysis and the following verification tests suggested that its anti-osteoporotic mechanism is related to the extracellular matrix receptor interaction-related pathways. This study provided a promising marine-derived anti-osteoporotic agent for the treatment of skeletal disease.


Asunto(s)
Osteoporosis , Penicillium , Animales , Hongos/metabolismo , Macrófagos , FN-kappa B/metabolismo , Osteoporosis/tratamiento farmacológico , Penicillium/química , Pez Cebra/metabolismo , Compuestos Bicíclicos con Puentes/química
16.
Acta Pharmacol Sin ; 34(10): 1359-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23933653

RESUMEN

AIM: Retigabine, an activator of KCNQ2-5 channels, is currently used to treat partial-onset seizures. The aim of this study was to explore the possibility that structure modification of retigabine could lead to novel inhibitors of KCNQ2 channels, which were valuable tools for KCNQ channel studies. METHODS: A series of retigabine derivatives was designed and synthesized. KCNQ2 channels were expressed in CHO cells. KCNQ2 currents were recorded using whole-cell voltage clamp technique. Test compound in extracellular solution was delivered to the recorded cell using an ALA 8 Channel Solution Exchange System. RESULTS: A total of 23 retigabine derivatives (HN31-HN410) were synthesized and tested electrophysiologically. Among the compounds, HN38 was the most potent inhibitor of KCNQ2 channels (its IC50 value=0.10 ± 0.05 µmol/L), and was 7-fold more potent than the classical KCNQ inhibitor XE991. Further analysis revealed that HN38 (3 µmol/L) had no detectable effect on channel activation, but accelerated deactivation at hyperpolarizing voltages. In contrast, XE991 (3 µmol/L) did not affect the kinetics of channel activation and deactivation. CONCLUSION: The retigabine derivative HN38 is a potent KCNQ2 inhibitor, which differs from XE991 in its influence on the channel kinetics. Our study provides a new strategy for the design and development of potent KCNQ2 channel inhibitors.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamatos/farmacología , Canal de Potasio KCNQ2/antagonistas & inhibidores , Fenilendiaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Animales , Antracenos/farmacología , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Células CHO , Carbamatos/síntesis química , Carbamatos/química , Cricetinae , Cricetulus , Diseño de Fármacos , Concentración 50 Inhibidora , Técnicas de Placa-Clamp , Fenilendiaminas/síntesis química , Fenilendiaminas/química , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Relación Estructura-Actividad
17.
Biochem Pharmacol ; 218: 115894, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37898389

RESUMEN

TWIK2 channel plays a critical role in NLRP3 inflammasome activation and mice deficient in TWIK2 channel are protected from sepsis and inflammatory lung injury. However, inhibitors of TWIK2 channel are currently in an early stage of development, and the molecular determinants underlying the chemical modulation of TWIK2 channel remain unexplored. In this study, we identified NPBA and the synthesized derivative NPBA-4 potently and selectively inhibited TWIK2 channel by using whole-cell patch clamp techniques. Furthermore, the mutation of the last residues of the selectivity filter in both P1 and P2 (i.e., T106A, T214A) of TWIK2 channel substantially abolished the effect of NPBA on TWIK2 channel. Our data suggest that NPBA blocked TWIK2 channel through binding at the bottom of the selectivity filter, which was also supported by molecular docking prediction. Moreover, we found that NPBA significantly suppressed NLRP3 inflammasome activation in macrophages and alleviated LPS-induced endotoxemia and organ injury in vivo. Notably, the protective effects of NPBA against LPS-induced endotoxemia were abolished in Kcnk6-/- mice. In summary, our study has uncovered a series of novel inhibitors of TWIK2 channel and revealed their distinct molecular determinants interacting TWIK2 channel. These findings provide new insights into the mechanisms of pharmacological action on TWIK2 channel and opportunities for the development of selective TWIK2 channel modulators to treat related inflammatory diseases.


Asunto(s)
Endotoxemia , Inflamasomas , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/toxicidad , Endotoxemia/inducido químicamente , Endotoxemia/tratamiento farmacológico , Endotoxemia/prevención & control , Simulación del Acoplamiento Molecular
18.
Acta Pharmacol Sin ; 33(6): 728-36, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22609836

RESUMEN

AIM: This study was conducted to test the selectivity of DC031050 on cardiac and neuronal potassium channels. METHODS: Human ether-à-go-go related gene (hERG), KCNQ and Kv1.2 channels were expressed in CHO cells. The delayed rectifier potassium current (I(K)) was recorded from dissociated hippocampal pyramidal neurons of neonatal rats. Whole-cell voltage patch clamp was used to record the voltage-activated potassium currents. Drug-containing solution was delivered using a RSC-100 Rapid Solution Changer. RESULTS: Both DC031050 and dofetilide potently inhibited hERG currents with IC(50) values of 2.3 ± 1.0 and 17.9 ± 1.2 nmol/L, respectively. DC031050 inhibited the I(K) current with an IC(50) value of 2.7 ± 1.5 µmol/L, which was >1000 times the concentration required to inhibit hERG current. DC031050 at 3 µmol/L did not significantly affect the voltage-dependence of the steady activation, steady inactivation of I(K), or the rate of I(K) from inactivation. Intracellular application of DC031050 (5 µmol/L) was insufficient to inhibit I(K). DC031050 up to 10 µmol/L had no effects on KCNQ2 and Kv1.2 channel currents. CONCLUSION: DC031050 is a highly selective hERG potassium channel blocker with a substantial safety margin of activity over neuronal potassium channels, thus holds significant potential for therapeutic application as a class III antiarrhythmic agent.


Asunto(s)
Antiarrítmicos/farmacología , Canales de Potasio Éter-A-Go-Go/metabolismo , Canales de Potasio KCNQ/metabolismo , Canal de Potasio Kv.1.2/metabolismo , Fenetilaminas/farmacología , Células Piramidales/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Antiarrítmicos/química , Células CHO , Cricetinae , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Expresión Génica , Hipocampo/citología , Hipocampo/efectos de los fármacos , Humanos , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/genética , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Canal de Potasio Kv.1.2/genética , Técnicas de Placa-Clamp , Fenetilaminas/química , Potasio/metabolismo , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Sulfonamidas/química
19.
Biochem Pharmacol ; 199: 114988, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278418

RESUMEN

The enzyme cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA and catalyzes the formation of 2'3'-cyclic-GMP-AMP (cGAMP), which in turn triggers interferon (IFN) production. Inappropriate activation of cGAS and production of cGAMP have been linked to a diversity of autoimmune diseases. The volume-regulated anion channels (VRACs) have been recently demonstrated to permeate cGAMP, thus making the channel essential for the activation of the cGAS-cGAMP-STING axis. DCPIB, a prominent inhibitor of VRAC channel, has been recently reported to also significantly activate TREK1 channel. Herein, in this study, we have designed and synthesized a series of novel DCPIB derivatives and investigated their potential regulatory effects on VRAC/TREK1 channels. Our results manifested that compound 6u was a dual inhibitor of VRAC/TREK1 channels with IC50s of 7.11 ± 0.94 µM and 4.43 ± 0.90 µM, respectively. On top of that, our data demonstrated that 6u impaired interferon production in a concentration-dependently manner by dampening cGAS-cGAMP-STING pathway without any cytotoxicity when it comes to herpes simplex virus type 1 (HSV1) infection. To sum up, our study not only discovered a novel DCPIB analog with dual inhibitory effects on VRAC/TREK1 channels but also provided a new strategy for the design and development of newly potent VRAC inhibitors, which benefits the treatment of cGAS-STING related autoimmune and inflammatory diseases.


Asunto(s)
Interferones , Proteínas de la Membrana , Antivirales/farmacología , Inmunidad Innata , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas
20.
Eur J Med Chem ; 229: 114092, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34998055

RESUMEN

Verinurad (RDEA3170) is a selective URAT1 inhibitor under investigation for the treatment of gout and hyperuricemia. In an effort to further improve the pharmacodynamics/pharmacokinetics of verinurad and to increase the structural diversity, we designed novel verinurad analogs by introducing a linker (e.g. aminomethyl, amino or oxygen) between the naphthalene and the pyridine ring to increase the flexibility. These compounds were synthesized and tested for their in vitro URAT1-inhibitory activity. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 0.24 µM to 16.35 µM. Among them, compound KPH2f exhibited the highest URAT1-inhibitory activity with IC50 of 0.24 µM, comparable to that of verinurad (IC50 = 0.17 µM). KPH2f also inhibited GLUT9 with an IC50 value of 9.37 ± 7.10 µM, indicating the dual URAT1/GLUT9 targeting capability. In addition, KPH2f showed little effects on OAT1 and ABCG2, and thus was unlikely to cause OAT1/ABCG2-mediated drug-drug interactions and/or to neutralize the uricosuric effects of URAT1/GLUT9 inhibitors. Importantly, KPH2f (10 mg/kg) was equally effective in reducing serum uric acid levels and exhibited higher uricosuric effects in a mice hyperuricemia model, as compared to verinurad (10 mg/kg). Furthermore, KPH2f demonstrated favorable pharmacokinetic properties with an oral bioavailability of 30.13%, clearly better than that of verinurad (21.47%). Moreover, KPH2f presented benign safety profiles without causing hERG toxicity, cytotoxicity in vitro (lower than verinurad), and renal damage in vivo. Collectively, these results suggest that KPH2f represents a novel, safe and effective dual URAT1/GLUT9 inhibitor with improved druggabilities and is worthy of further investigation as an anti-hyperuricemic drug candidate.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Hiperuricemia/tratamiento farmacológico , Naftalenos/química , Transportadores de Anión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Propionatos/química , Piridinas/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Humanos , Riñón , Naftalenos/toxicidad , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Propionatos/toxicidad , Piridinas/toxicidad , Ácido Úrico/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA