Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Biol Rep ; 37(3): 1329-33, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19306073

RESUMEN

The KCNQ1 channel is abundantly expressed in the gastric parietal cells. Although the functional coupling of KCNQ1 with the H(+)/K(+)-ATPase has already been confirmed on the basis of pharmacological kinetics, the effect of a KCNQ1 loss-of-function mutation on gastric acidification remains unclear. In this study, parietal cells and gastric glands from both C57BL/6 J mice (normal control) and J343 mice (mice with a KCNQ1 loss-of-function mutation) were isolated to study the effects of KCNQ1 on gastric acidification. We found that the mutation limited intracellular acidification of parietal cells and H(+) secretion of the stomach in response to histamine. Thus, a KCNQ1 loss-of-function mutation may impair gastric acid secretion.


Asunto(s)
Ácido Gástrico/metabolismo , Canal de Potasio KCNQ1/genética , Células Parietales Gástricas/metabolismo , Análisis de Varianza , Animales , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Concentración de Iones de Hidrógeno , Canal de Potasio KCNQ1/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación/genética
2.
FEBS Lett ; 582(15): 2338-42, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-18503768

RESUMEN

Inward rectifier potassium Kir2.x channels mediate cardiac inward rectifier potassium currents (I(K1)). As a subunit of Kir2.x, the physiological role of Kir2.3 in native cardiomyocytes has not been reported. This study shows that Kir2.3 knock-down remarkably down-regulates Kir2.3 expression (Kir2.3 protein was reduced to 19.91+/-3.24% on the 2nd or 3rd day) and I(K1) current densities (at -120 mV, control vs. knock-down: -5.03+/-0.24 pA/pF, n=5 vs. -1.16+/-0.19 pA/pF, n=7, P<0.001) in neonatal rat cardiomyocytes. The data suggest that Kir2.3 plays a potentially important role in I(K1) currents in neonatal rat cardiomyocytes.


Asunto(s)
Potenciales de la Membrana , Miocitos Cardíacos/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Células Cultivadas , Expresión Génica , Potenciales de la Membrana/genética , Microscopía Confocal , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Interferencia de ARN , Ratas , Ratas Sprague-Dawley
3.
Heart Rhythm ; 4(5): 611-8, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17467630

RESUMEN

BACKGROUND: We recently reported that an S140G mutation in human KCNQ1, an alpha subunit of potassium channels, was involved in the pathogenesis of familial atrial fibrillation (AF), but it is not clear whether the mutation is associated with other cardiac arrhythmias. OBJECTIVE: The purpose of this study was to further explore the association of the KCNQ1 S140G mutation with cardiac arrhythmias. METHODS: We produced a transgenic mouse model with myocardium-specific expression of the human KCNQ1 S140G mutation under the control of an alpha-cardiac myosin heavy chain promoter by standard transgenic procedure and evaluated the relationship between the KCNQ1 mutation and its phenotypes in a human family. RESULTS: Four lines of transgenic mice were established with a high level of human KCNQ1 S140G expression in the heart. Frequent episodes of first-, second-, advanced-, or third-degree atrioventricular block (AVB) occurred in at least 65% of transgenic descendants from the four lines. However, none of the five wild-type transgenic lines presented with AVBs. HMR1556, a KCNQ1-specific blocker, can terminate the AVBs. With the exception of at most three AF individuals, at least 13 AF patients were found to show obviously slow ventricular response, which may be one manifestation of AVBs. Interestingly, AF was not detected in these transgenic mice. CONCLUSION: The results suggest that human KCNQ1 S140G is also likely to be a causative mutation responsible for AVBs. The transgenic mouse model is a potential tool to explore mechanisms of AVBs.


Asunto(s)
Bloqueo Cardíaco/genética , Canal de Potasio KCNQ1/genética , Mutación , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/fisiopatología , China , Cromanos/farmacología , Electrocardiografía , Femenino , Predisposición Genética a la Enfermedad , Glicina , Bloqueo Cardíaco/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/genética , Ventrículos Cardíacos/efectos de los fármacos , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Canal de Potasio KCNQ1/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Linaje , Fenotipo , Proyectos de Investigación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina , Índice de Severidad de la Enfermedad , Sulfonamidas/farmacología
5.
Int J Cardiol ; 127(3): 427-9, 2008 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-17707096

RESUMEN

Atrial fibrillation (AF) is the most common arrhythmia in clinical practices. Mediated by muscarinic type 2 receptors (M(2)Rs), acetylcholine affects electrophysiological activities of atrial myocytes and may contribute to the onset of AF. In order to characterize the distribution of M(2)Rs in the atrial myocardium, different atrial regions in both the SD rat and human were dissected. Atrial myocytes were isolated with type II collagenase. The M(2)Rs expression in these atrial tissues and myocytes was detected by immunofluorescent staining and confocal laser scanning biological microscope. The results showed the highest density of M(2)Rs in atrial myocytes of the left atrial posterior wall. It is concluded that there is a marked spatial heterogeneity in the expression of the M(2)Rs in the atrium, which might create a substrate that would favor the initiation and maintenance of acetylcholine-induced AF.


Asunto(s)
Atrios Cardíacos/metabolismo , Receptor Muscarínico M2/fisiología , Animales , Fibrilación Atrial/metabolismo , Atrios Cardíacos/química , Humanos , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M2/biosíntesis , Receptor Muscarínico M2/genética
6.
Biochem Biophys Res Commun ; 351(2): 462-7, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17067550

RESUMEN

The inward rectifier potassium channel, Kir2.1, contributes to the I(K1) current in cardiac myocytes and is closely associated with atrial fibrillation. Strong evidences have shown that atrial dilatation or stretch may result in atrial fibrillation. However, the role of Kir2.1 channels in the stretch-mediated atrial fibrillation is not clear. In this study, we constructed the recombinant plasmid of KCNJ2 that encodes the Kir2.1 channel and expressed it in CHO-K1 cells. We recorded I(K1) currents using the whole-cell patch clamping technique. Our data showed that I(K1) currents were significantly larger under stretch in the hypotonic solution than under non-stretch in the iso-osmotic solution, and the activation kinetics of the Kir2.1 channel were changed markedly by stretch as well. Thus, atrial stretch in human heart might result in excessive I(K1) currents, which is likely to increase the resting membrane potential and decrease the effective refractory period, to initiate and/or maintain atrial fibrillation.


Asunto(s)
Forma de la Célula/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Células CHO , Clonación Molecular , Cricetinae , Cricetulus , Activación del Canal Iónico , Cinética , Potenciales de la Membrana , Presión Osmótica , Técnicas de Placa-Clamp , Estrés Mecánico
7.
Biochem Biophys Res Commun ; 332(4): 1012-9, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15922306

RESUMEN

The inward rectifier K(+) channel Kir2.1 mediates the potassium I(K1) current in the heart. It is encoded by KCNJ2 gene that has been linked to Andersen's syndrome. Recently, strong evidences showed that Kir2.1 channels were associated with mouse atrial fibrillation (AF), therefore we hypothesized that KCNJ2 was associated with familial AF. Thirty Chinese AF kindreds were evaluated for mutations in KCNJ2 gene. A valine-to-isoleucine mutation at position 93 (V93I) of Kir2.1 was found in all affected members in one kindred. This valine and its flanking sequence is highly conserved in Kir2.1 proteins among different species. Functional analysis of the V93I mutant demonstrated a gain-of-function consequence on the Kir2.1 current. This effect is opposed to the loss-of-function effect of previously reported mutations in Andersen's syndrome. Kir2.1 V93I mutation may play a role in initiating and/or maintaining AF by increasing the activity of the inward rectifier K(+) channel.


Asunto(s)
Fibrilación Atrial/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Secuencia Conservada , ADN/química , Análisis Mutacional de ADN , Electrofisiología , Salud de la Familia , Femenino , Atrios Cardíacos/metabolismo , Humanos , Isoleucina/química , Masculino , Microscopía Confocal , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Transfección , Valina/química
8.
Am J Hum Genet ; 75(5): 899-905, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15368194

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in clinical practice. We first reported an S140G mutation of KCNQ1, an alpha subunit of potassium channels, in one Chinese kindred with AF. However, the molecular defects and cellular mechanisms in most patients with AF remain to be identified. We evaluated 28 unrelated Chinese kindreds with AF and sequenced eight genes of potassium channels (KCNQ1, HERG, KCNE1, KCNE2, KCNE3, KCNE4, KCNE5, and KCNJ2). An arginine-to-cysteine mutation at position 27 (R27C) of KCNE2, the beta subunit of the KCNQ1-KCNE2 channel responsible for a background potassium current, was found in 2 of the 28 probands. The mutation was present in all affected members in the two kindreds and was absent in 462 healthy unrelated Chinese subjects. Similar to KCNQ1 S140G, the mutation had a gain-of-function effect on the KCNQ1-KCNE2 channel; unlike long QT syndrome-associated KCNE2 mutations, it did not alter HERG-KCNE2 current. The mutation did not alter the functions of the HCN channel family either. Thus, KCNE2 R27C is a gain-of-function mutation associated with the initiation and/or maintenance of AF.


Asunto(s)
Fibrilación Atrial/genética , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio/genética , Potasio/metabolismo , Animales , Secuencia de Bases , Células COS , China , Chlorocebus aethiops , Electrocardiografía , Femenino , Humanos , Transporte Iónico , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación Missense/genética , Mutación Missense/fisiología , Linaje , Canales de Potasio/fisiología , Análisis de Secuencia de ADN , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA