Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 356: 120573, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479289

RESUMEN

Anaerobic co-fermentation is a favorable way to convert agricultural waste, such as swine manure (SM) and apple waste (AW), into lactic acid (LA) through microbial action. However, the limited hydrolysis of organic matter remains a main challenge in the anaerobic co-fermentation process. Therefore, this work aims to deeply understand the impact of cellulase (C) and protease (P) ratios on LA production during the anaerobic co-fermentation of SM with AW. Results showed that the combined use of cellulase and protease significantly improved the hydrolysis during the enzymatic pretreatment, thus enhancing the LA production in anaerobic acidification. The highest LA reached 41.02 ± 2.09 g/L within 12 days at the ratio of C/P = 1:3, which was approximately 1.26-fold of that in the control. After a C/P = 1:3 pretreatment, a significant SCOD release of 45.34 ± 2.87 g/L was achieved, which was 1.13 times the amount in the control. Moreover, improved LA production was also attributed to the release of large amounts of soluble carbohydrates and proteins with enzymatic pretreated SM and AW. The bacterial community analysis revealed that the hydrolytic bacteria Romboutsia and Clostridium_sensu_stricto_1 were enriched after enzyme pretreatment, and Lactobacillus was the dominant bacteria for LA production. This study provides an eco-friendly technology to enhance hydrolysis by enzymatic pretreatment and improve LA production during anaerobic fermentation.


Asunto(s)
Celulasas , Malus , Animales , Porcinos , Fermentación , Estiércol/microbiología , Ácido Láctico , Bacterias , Péptido Hidrolasas
2.
Bioresour Technol ; 406: 131012, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908762

RESUMEN

Anaerobic co-fermentation of swine manure (SM) and apple waste (AW) restricts by the slow hydrolysis of substrates with complex structures, which subsequently leads to low lactic acid (LA) production. Therefore, a novel strategy based on enzymatic pretreatment for improving LA production from anaerobic co-fermentation of SM and AW was proposed in this study. The results indicated that the maximal LA concentration increased from 35.89 ± 1.84 to 42.70 ± 2.18 g/L with the increase of enzyme loading from 0 to 300 U/g VSsubstrate. Mechanism exploration indicated that enzymatic pretreatment significantly promoted the release and hydrolysis of insoluble organic matter from fermentation substrate, thus providing an abundance of reaction intermediates that were directly available for LA production. Additionally, bacteria analysis revealed that the high concentration of LA was associated with the prevalence of Lactobacillus. This study offered an environmental-friendly strategy for promoting SM and AW hydrolysis and provided a viable approach for recovering valuable products.

3.
Waste Manag ; 185: 25-32, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38820781

RESUMEN

Lactic acid (LA) is an important chemical with broad market applications. To optimize LA production, food waste has been explored as feedstock. Due to the wide variety of food waste types, most current research studies have obtained different conclusions. This study focuses on carbohydrate-rich fruit and vegetable waste (FVW) and lipid-rich kitchen waste (KW), and the effect of inoculum, temperature, micro-oxygen, and initial pH were compared. FVW has a greater potential for LA production than KW. As an inoculum, lactic acid bacteria (LAB) significantly increased the maximum LA concentration (27.6 g/L) by 50.8 % compared with anaerobic sludge (AS). FVW exhibited optimal LA production at 37 °C with micro-oxygen. Adjustment of initial pH from 4 to 8 alleviated the inhibitory effect of accumulated LA, resulting in a 46.2 % increase in maximum LA production in FVW. The expression of functional genes associated with metabolism, genetic information processing, and environmental information processing was higher at 37 °C compared to 50 °C.


Asunto(s)
Ácido Láctico , Temperatura , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Oxígeno/metabolismo , Oxígeno/química , Eliminación de Residuos/métodos , Verduras , Aguas del Alcantarillado , Frutas/química , Frutas/metabolismo , Alimento Perdido y Desperdiciado
4.
Front Bioeng Biotechnol ; 10: 918365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782506

RESUMEN

Emissions of odorous compounds, such as ammonia (NH3), from composting have negative agronomic and environmental impacts. A biofilter is widely used for NH3 removal, with one of its potential detrimental by-products being nitrous oxide (N2O), which is a higher warming potential greenhouse gas (GHG). The aim of the study was to evaluate the effect of empty bed retention time (EBRT) on GHG emissions from biofilters for removing NH3 from composting. Composting experimental trials lasted 6 weeks, and composting materials were mixtures of dead pigs and manure. Three groups of biofilters with 1.2 m-height, 0.3 m-inner diameter, and 1.0 m media depth were conducted with EBRT of 30, 60, and 100s, respectively. Each treatment was performed in triplicate, and the gas was monitored using the dynamic emission vessel method. The Spearman's correlation analysis showed a significantly positive correlation between inlet concentrations (ICs) of NH3 and increased N2O concentrations: ρ = 0.707, 0.762, and 0.607 with p ≤ 0.0001 for biofilters with EBRT of 30, 60, and 100s, respectively. The fraction of NH3-N denitrified into N2O-N in biofilters with EBRT of 60 and 100s was higher than that with EBRT of 30s. The total global warming potential (GWP) increased by 126%, 162%, and 144% for biofilters with EBRT of 30, 60, and 100s, respectively. These results indicated that biofilters with longer EBRT will lead to higher GWP production. Future research on odorous mitigation for composting with biofilters should focus more on greenhouse gas emissions.

5.
Bioresour Technol ; 365: 128140, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252761

RESUMEN

Micro-aeration is considered a new strategy for improving volatile fatty acids (VFAs) production of agricultural waste. This study investigated the effect and mechanism of micro-aeration of air and oxygen (O2) on VFAs production from swine manure. The results showed that Air-micro-aeration had the most significant improvement effect, with the highest VFAs of 8.21 g/L, which was increased by 22.4%. Moreover, the mixing effects of different micro-aeration were limited, and the microbial communities significantly varied. Firmicutes and Bacteroidota were the dominant hydrolytic and acidogenic bacteria, and Air-micro-aeration preferentially promoted electron transfer activity and energy generation. Methanosarcina, Methanocorpusculum, and Methanobrevibacter can adapt to environmental changes according to their different oxygen tolerance, and the consumption and conversion of VFAs by methanogens were slow under Air-micro-aeration condition. This study revealed mechanism of micro-aeration for improving VFAs production from swine manure, providing a theoretical basis for micro-aeration regulation optimization.


Asunto(s)
Ácidos Grasos Volátiles , Estiércol , Porcinos , Animales , Oxígeno , Metabolismo de los Hidratos de Carbono , Bacterias , Fermentación , Reactores Biológicos , Concentración de Iones de Hidrógeno
6.
Bioresour Technol ; 347: 126656, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34974096

RESUMEN

Micro-aeration was proven to be an environmentally friendly strategy for efficiently enhancing volatile fatty acids (VFAs) and lactic acid (LA) production. The roles of micro-aeration on mono-digestion of swine manure (SM) for VFAs production and co-digestion of SM with corn silage (CS) for LA production were investigated, respectively. In this study, micro-aeration increased the maximum VFAs concentration by 20.3% to 35.71 g COD/L, and shortened the time to reach the maximum from 18 days to 10 days. Micro-aeration limited the conversion of LA into VFAs, leading to LA accumulation effectively to be 26.08 g COD/L. Microbial community analysis suggested that Clostridium and Terrisporobacter were always the dominant bacteria with or without micro-aeration for VFAs production, but the relative abundance increased notably during the same period. However, Bifidobacterium, which could use the higher productivity metabolism pathway, i.e., Bifidum pathway to produce LA, increased from lower than 1% to 22.9% by micro-aeration.


Asunto(s)
Reactores Biológicos , Ácido Láctico , Anaerobiosis , Animales , Ácidos Grasos Volátiles , Fermentación , Estiércol , Porcinos
7.
J Air Waste Manag Assoc ; 71(3): 378-391, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33094706

RESUMEN

Odor emission is one of the most common problems associated with dead animals composting. Biofiltration treatment for eliminating exhaust odors formed during dead pigs and manure composting has been studied. The composting and biofiltration process consisted of two series of tests. Composting experimental trials lasted 6 weeks, and composting was performed using six pilot-scale reactor vessels. A total of 37 kinds of volatile organic compounds (VOCs) present in the air were identified, and temporal variations were determined during the 42 days of composting. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), and trimethylamine (TMA) were identified as the main odors VOCs component according to odor active values (OAVs). Nine biofilter vessels containing mature compost were used in studying the effect of different (30, 60, and 100 s) empty bed retention times (EBRT) on the simultaneous removal efficiencies (REs) of NH3, DMS, DMDS, DMTS, and TMA. Results indicated that the inlet concentration of NH3 applied was 12-447 mg m-3, and the average removal efficiencies were 85.4%, 88.7%, and 89.0% for EBRTs of 30, 60, and 100 s, respectively. The average REs of DMS, DMDS, DMTS, and TMA were 79.2%-95.4%, 81.9%-94.0%, 76.7%-99.1%, and 92.9%-100%, respectively, and their maximum elimination capacity (ECs) were 220, 1301, 296, and 603 mg m-3 h-1, respectively. The optimal EBRT for the stimulation removal of NH3, DMS, DMDS, DMTS, and TMA was 60 s.Implications: Dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), and trimethylamine (TMA) were identified as the main odors VOCs component during dead pigs and manure composting. Biofilter with mature as media can be used to stimulation remove NH3, DMS, DMDS, DMTS, and TMA, the optimal empty bed retention times EBRT was 60 s.


Asunto(s)
Compostaje , Compuestos Orgánicos Volátiles , Amoníaco/análisis , Animales , Filtración , Estiércol , Odorantes , Porcinos
8.
Bioresour Technol ; 336: 125307, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34049170

RESUMEN

Co-anaerobic fermentation (co-AF) of swine manure (SM) and apple waste (AW) has been proved to be beneficial for lactic acid (LA) production. In order to further improve the LA production, three important parameters, namely AW in feedstock, temperature, volatile solids (VS) of feedstock, were evaluated using Box-Behnken design and response surface methodology. The quadratic regression model was developed and interactive effects was found between the three parameters. Results showed that the maximum concentration, 31.18 g LA/L (with LA yield of 0.62 g/g VS), was obtained under optimum conditions of 60.4% AW in feedstock, 34.7 ℃, and 5.0% VS. At the optimum conditions, the solubilization of organic matter was enhanced compared with mono-fermentation of SM. Microbial community structure of the reactor diverged greatly with fermentation time. Clostridium and Lactobacillus were dominant bacteria in the fermentation process, resulting in a remarkably LA accumulation.


Asunto(s)
Malus , Microbiota , Anaerobiosis , Animales , Reactores Biológicos , Fermentación , Ácido Láctico , Estiércol , Porcinos
9.
J Air Waste Manag Assoc ; 67(12): 1288-1297, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28453404

RESUMEN

Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH3), hydrogen sulfide (H2S), and nitrous oxide (N2O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH3 removal efficiency, but increase outlet N2O concentration. When MC was 67%, the average NH3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H2S removal efficiency dropped from 68.1-90.0% (1-34 days of the test period) to 36.8-63.7% (35-58 days of the test period); and the average outlet N2O concentration increased by 25.5-60.1%. When MC was 55%, the average removal efficiency of NH3, H2S, and N2O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and -18.9 ± 8.1%, respectively; and the average removal efficiency of NH3, H2S, and N2O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and -24.5 ±12.1%, respectively. When MC was 45%, the highest average NH3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N2O removal efficiency for three MDs ranged from -18.8% to -12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD (p < 0.05). To obtain high mitigation of NH3 and H2S and avoid elevated emission of N2O and large pressure drop, 0.33 m MD at 55% MC is recommended. IMPLICATIONS: The performances of biofilters with three different media depths (0.17, 0.33, and 0.50 m) and three different media moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH3 and H2S, and to simultaneously prevent elevated emission of N2O and large pressure drop across the media.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Filtración/métodos , Sulfuro de Hidrógeno/análisis , Óxido Nitroso/análisis , Porcinos , Contaminantes Atmosféricos/química , Amoníaco/química , Animales , Compostaje , Filtración/instrumentación , Sulfuro de Hidrógeno/química , Óxido Nitroso/química , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA